
  1

Learning from user
in constraint solving

Tias Guns <tias.guns@kuleuven.be>

Joint work with:

- Rocs Canoy
- Jayanta Mandi
- Victor Bucarey Lopez



  2

Combinatorial optimisation

“Solving constrained optimisation problems”

 Vehicle Routing

 Scheduling

 Configuration

 Graph problems
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   Model          +          Solve

Domain experts
Stakeholders

Current constraint solving practice

Opt. expert  
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   Model          +          Solve

Domain experts
Stakeholders

Current constraint solving practice, problem

Too rigid, too static

Opt. expert  
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   Model          +          Solve

Research trend

Can we learn
it instead?

1) learn the
    constraints 2) learn the

    objective
    function

3) learn to predict
    the solution



  

Prediction  +  constraint solving

 Part  explicit  knowledge:
in a formal language

 

 Part  implicit  knowledge:
learned from data



  

Prediction  +  constraint solving

 Part  explicit  knowledge:
in a formal language

 

 Part  implicit  knowledge:
learned from data

 tacit knowledge (user preferences, social conventions)

 complex environment (demand, prices, defects)

 perception (vision, natural language, audio)



  

Tacit knowledge (user preferences)

“Vehicle routing by learning from historical solutions”

[Rocsildes Canoy and Tias Guns, CP19], Best student paper award

GOAL: Learn preferences, reduce manual effort, adapt to changes over time!

LEARN



  

Tacit knowledge (user preferences)

Small data:  6 months = 26 weeks = 130 week days (instances)



  

Tacit knowledge (user preferences)

For single vehicles, in mobility mining literature:

              Can we use similar techniques (Markov Models)

              to learn preferences across routings of multiple vehicles?

And can we optimize over them with constraint solving?



  

Learning and prediction part

Key idea:

  if we can capture the 'preferences' in a probabilistic model

  then we can evaluate the likelihood of a routing
P([v1_stop1,v1_stop2,...],[v2_stop1, v2_stop2, …], …)

 



  

Learning and prediction part

Key idea:

  if we can capture the 'preferences' in a probabilistic model

  then we can evaluate the likelihood of a routing
P([v1_stop1,v1_stop2,...],[v2_stop1, v2_stop2, …], …)

One route is a chain of stops → treat as Markov Chain

1)  for convenience, daisy-chain all routes into one

P(<s1,s2,s3,s4,...>) = P(s1)*P(s2|s1)*P(s3|s2,s1)*P(s4|s3,s2,s1)*...

1)  a 1st order approximation: P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...
 (depend only on previous stop)



  

Learning and prediction part

1st order Markov Model:

P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

→ estimate the P(sy|sx) by observing the transitions in the 
actually driven routes
probability of transition = relative nr of observations in the data



  

Constrained optimisation: what now?

Goal: find maximum likelihood solution:
maximize P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

s.t. VRP([s1,s2,s3,...])

Standard probability computation trick: log-likelihood

               =                          

 → VRP: replace distance matrix by negative log-likelihood matrix!



  

Back to the learning...

Can we do the learning better?

Training data = a sequence (one for every day) of 
observed routing sequences

→ each routing is over slightly different sets of 
customers

→ preferences can change over time (concept drift)



  

Concept drift

When 'counting' the probabilities:
 can include a prior on each historic instance wrt. current day
 e.g. weighing of the instance:

 uniform = unit weight
 by time = more recent instances get higher weight
 by similarity = how much overlap in clients with current 

day



  

Concept drift



  

Learning the preferences

= mimicking the user choices → copying, not intelligence?

Optimisation software is meant to do better than a user
(by considering larger nr of candidates and better resolving of conflicts)

               I prefer route X even if it is 2 kilometers longer

               → trade's off distance versus preference

Optimize combination of both:



  

Tacit knowledge (user preferences)

 Solvable with any VRP solver, including constraints
 Better than traditional approaches, multiple weighing schemes possible


