
 1

Learning from user
in constraint solving

Tias Guns <tias.guns@kuleuven.be>

Joint work with:

- Rocs Canoy
- Jayanta Mandi
- Victor Bucarey Lopez

 2

Combinatorial optimisation

“Solving constrained optimisation problems”

 Vehicle Routing

 Scheduling

 Configuration

 Graph problems

 3

 Model + Solve

Domain experts
Stakeholders

Current constraint solving practice

Opt. expert

 4

 Model + Solve

Domain experts
Stakeholders

Current constraint solving practice, problem

Too rigid, too static

Opt. expert

 5

 Model + Solve

Research trend

Can we learn
it instead?

1) learn the
 constraints 2) learn the

 objective
 function

3) learn to predict
 the solution

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

 tacit knowledge (user preferences, social conventions)

 complex environment (demand, prices, defects)

 perception (vision, natural language, audio)

Tacit knowledge (user preferences)

“Vehicle routing by learning from historical solutions”

[Rocsildes Canoy and Tias Guns, CP19], Best student paper award

GOAL: Learn preferences, reduce manual effort, adapt to changes over time!

LEARN

Tacit knowledge (user preferences)

Small data: 6 months = 26 weeks = 130 week days (instances)

Tacit knowledge (user preferences)

For single vehicles, in mobility mining literature:

 Can we use similar techniques (Markov Models)

 to learn preferences across routings of multiple vehicles?

And can we optimize over them with constraint solving?

Learning and prediction part

Key idea:

 if we can capture the 'preferences' in a probabilistic model

 then we can evaluate the likelihood of a routing
P([v1_stop1,v1_stop2,...],[v2_stop1, v2_stop2, …], …)

Learning and prediction part

Key idea:

 if we can capture the 'preferences' in a probabilistic model

 then we can evaluate the likelihood of a routing
P([v1_stop1,v1_stop2,...],[v2_stop1, v2_stop2, …], …)

One route is a chain of stops → treat as Markov Chain

1) for convenience, daisy-chain all routes into one

P(<s1,s2,s3,s4,...>) = P(s1)*P(s2|s1)*P(s3|s2,s1)*P(s4|s3,s2,s1)*...

1) a 1st order approximation: P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...
 (depend only on previous stop)

Learning and prediction part

1st order Markov Model:

P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

→ estimate the P(sy|sx) by observing the transitions in the
actually driven routes
probability of transition = relative nr of observations in the data

Constrained optimisation: what now?

Goal: find maximum likelihood solution:
maximize P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

s.t. VRP([s1,s2,s3,...])

Standard probability computation trick: log-likelihood

 =

 → VRP: replace distance matrix by negative log-likelihood matrix!

Back to the learning...

Can we do the learning better?

Training data = a sequence (one for every day) of
observed routing sequences

→ each routing is over slightly different sets of
customers

→ preferences can change over time (concept drift)

Concept drift

When 'counting' the probabilities:
 can include a prior on each historic instance wrt. current day
 e.g. weighing of the instance:

 uniform = unit weight
 by time = more recent instances get higher weight
 by similarity = how much overlap in clients with current

day

Concept drift

Learning the preferences

= mimicking the user choices → copying, not intelligence?

Optimisation software is meant to do better than a user
(by considering larger nr of candidates and better resolving of conflicts)

 I prefer route X even if it is 2 kilometers longer

 → trade's off distance versus preference

Optimize combination of both:

Tacit knowledge (user preferences)

 Solvable with any VRP solver, including constraints
 Better than traditional approaches, multiple weighing schemes possible

