

Learning from user in constraint solving

Tias Guns <tias.guns@kuleuven.be>

Joint work with:

- Rocs Canoy

- Jayanta Mandi
- Victor Bucarey Lopez

Combinatorial optimisation

"Solving constrained optimisation problems"

- Vehicle Routing
- Scheduling
- Configuration

Graph problems

Current constraint solving practice

Current constraint solving practice, problem

Research trend

Prediction + constraint solving

 Part <u>explicit</u> knowledge: in a formal language

 Part <u>implicit</u> knowledge: learned from data

Prediction + constraint solving

 Part <u>explicit</u> knowledge: in a formal language

 Part <u>implicit</u> knowledge: learned from data

- tacit knowledge (user preferences, social conventions)
- complex environment (demand, prices, defects)
- perception (vision, natural language, audio)

"Vehicle routing by learning from historical solutions" [Rocsildes Canoy and Tias Guns, <u>CP19]</u>, **Best student paper award**

GOAL: Learn preferences, reduce manual effort, <u>adapt to changes over time!</u>

Small data: 6 months = 26 weeks = 130 week days (instances)

For single vehicles, in mobility mining literature:

- Driver turn prediction [Krumm, 2008]
- Prediction of remainder of route early in the trip [Ye et al., 2015]
- Prediction of route given origin and destination [Wang et al., 2015]

Can we use similar techniques (Markov Models)

to learn preferences across routings of multiple vehicles?

And can we optimize over them with constraint solving?

Learning and prediction part

Key idea:

if we can capture the 'preferences' in a probabilistic model then we can evaluate the *likelihood* of a routing P([v1_stop1,v1_stop2,...],[v2_stop1, v2_stop2, ...], ...)

Learning and prediction part

Key idea:

if we can capture the 'preferences' in a probabilistic model then we can evaluate the *likelihood* of a routing P([v1_stop1,v1_stop2,...],[v2_stop1, v2_stop2, ...], ...)

One route is a chain of stops \rightarrow treat as Markov Chain

1) for convenience, daisy-chain all routes into one

 $P(<\!\!\mathrm{s1},\!\!\mathrm{s2},\!\!\mathrm{s3},\!\!\mathrm{s4},\!\ldots\!\!>) = P(\!\mathrm{s1})^*P(\!\mathrm{s2}|\!\mathrm{s1})^*P(\!\mathrm{s3}|\!\mathrm{s2},\!\mathrm{s1})^*P(\!\mathrm{s4}|\!\mathrm{s3},\!\mathrm{s2},\!\mathrm{s1})^*\ldots$

 a 1st order approximation: P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*... (depend only on previous stop)

Learning and prediction part

1st order Markov Model:

P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*...

 \rightarrow estimate the P(s_y|s_x) by observing the transitions in the actually driven routes

probability of transition = relative nr of observations in the data

$$t_{ij} = \frac{f_{ij} + \alpha}{N_i + \alpha d},$$

Goal: find maximum likelihood solution:

 $= \max \sum log(t_{ij})x_{ij}.$

 $(i,j) \in A$

maximize P([s1,s2,s3,...) = P(s1)*P(s2|s1)*P(s3|s2)*... s.t. VRP([s1,s2,s3,...])

Standard probability computation trick: log-likelihood

$$\max \prod_{(i,j)\in X} \mathbf{Pr}(\text{next stop}=j \mid \text{current stop}=i),$$

 $\rightarrow VRP: \text{ replace distance matrix by negative log-likelihood matrix!} \\ \min \sum_{(i,j) \in A} c_{ij} x_{ij} \implies \min \sum_{(i,j) \in A} -log(t_{ij}) x_{ij}.$

Can we do the learning better?

Training data = a *sequence* (one for every day) of observed routing *sequences*

 \rightarrow each routing is over slightly different sets of customers

→ preferences can change over time (concept drift)

Concept drift

When 'counting' the probabilities:

- can include a *prior* on each historic instance <u>wrt. current day</u>
- e.g. weighing of the instance:

$$\mathbf{F} = \sum_{t} w_t \mathbf{A}^t.$$

- uniform = unit weight
- by time = more recent instances get higher weight
- by similarity = how much overlap in clients with current day

Fig. 8 Route and arc difference during concept drift (<u>rise</u> in number of stops)

Learning the preferences

= mimicking the user choices \rightarrow copying, not *intelligence*?

Optimisation software is meant to do *better* than a user (by considering larger nr of candidates and better resolving of conflicts)

I prefer route X even if it is 2 kilometers longer → trade's off distance versus preference

Optimize combination of both: $t'_{ij} = \beta t_{ij} + (1 - \beta)d_{ij}$.

- Solvable with any VRP solver, including constraints
- Better than traditional approaches, multiple weighing schemes possible