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General outline

This session:

* ~60 min Principles of Data Science
* ~30 min Learning from user in CP

* ~30 min Practical (python notebook)

Afternoon session:

e ~20 min
e ~40 min
e ~30 min

_earning from vision in CP
_earning from environment in CP

Practical (other python notebook)
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What Is data science?

“The previous new hype?”

Statistics...
Big data...
Machine Learning...
Data Analytics... Data Mining...
Deep Learning...
Prescriptive analytics... Al..

Data Science...



What Is Data Science?

No single definition

Components:

e Data-driven (the more the better: big data)
 |Interdisciplinary (math, stat, CS, ...)

* Extract knowledge from observed data



Success stories 1/3
automatic image captioning

‘man in black shirt is playing ‘construction worker in orange
guitar” safety vest is working on road.” lego toy.”

A i
‘girl in pink dress is jJumping in ‘black and white dog jumps over “young girl in pink shirt is
air” bar” swinging on swing.”

Automalic Image Caplion Generation
Sample taken from Andrej Karpathy, Li Fei-Fe



Success stories 2/3

product recommendation

Q Search

Popular on Netflix

NETFLIX |

NETFLIX
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Success stories 3/3
spam detection
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[Example by Paolo Frasconi]



Common Data Mining Tasks

Classification and class probability estimation
* How likely is this consumer to respond to our campaign?

Regression

- How much will she use the service?

Similarity Matching

- Can we find consumers similar to my best customers?

[ ]

Clustering

* Do my customers form natural groups?

P. Adamopoulos H New York University



Common Data Mining Tasks

Supervised Methods | Unsupervised Methods

*Classification v
*Regression
Causal Modeling
Similarity Matching
Link Prediction
Data Reduction

< B < B <

Clustering
Co-occurrence Grouping

B < B < B <

Profiling

Supervised = labelled data, target attribute (e.g. SPAM or not)
Unsupervised = no labels (e.g. customer records for profiling)

P. Adamopoulos New York University



Terminology

P. Adamopoulos

Attributes ag:};ﬂﬁie
- - I~
Name Balance Age Employed | Write-off
Mike $200,000 42 no yes
Mary 535,000 33 yes no
—{ Claudio $115,000 40 no no
Robert $29,000 P! yes yes
Dora §72,000 31 no no

This is one row (example).
— Feature vector is: <Claudio,115000,40,n0>

(lass label (value of Target attribute) is no

New York University



Books

Most books: algorithmic or statistical focus

Data SQI@HC@ Focus on general principles
for Business
Aot Data bing et ‘In ten years’ time,
Data-Analytic Thinking technologies will likely have changed
C— such that today’s choices seem quaint.”
L2 —

“general principles same for 20 years”

Foster Provost & Tom Fawcett



Principle 1.

Data Science Is a process



From collection to utilization

Data collection

Data storage

Data retrieval

Data analysis

!I¢



Chronology

1950- 1970- 1990- 2000-

Automatic

Collaborative
collection

Collection

collection

-'-J‘-

AT .
ad-hoc relational object-relaticnal social media,

databases databases databases web, cloud
, TEbmeSECE

Storage

query information  collabgrative filtering

rogrammin i .
Prog 8 language retrieval social methods

Retrieval

— machine o relational data mining.
statistics : data mining
learning

Analysis

network analysis ;

“big data”



CRISP-DM process
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An example

Business understanding
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An example

Data understanding

Given a text message, predict whether it Is spam
or not

- text categorization, useful in general
- we want a function from message to {0,1}

— Is called binary classification problem



An example

Data preparation: raw text

Modeling:

We could write a rule-based system, such as

If Title.contains(“YOU HAVE WONI!!!") then
return Spam

Does it work well? - evaluate



An example

Evaluation
Truth
Legitimate
_'E Spam 150 30 False positives
S
5, iy
£ | Legitimate 200 720
False
negatives




An example

Evaluation to Business understanding:

 How do we find good rules?
Knowledge elicitation or formalization may be difficult

* How do we define good? Will depend on user?

We need a system that can adapt: self-learning



An example,
classificatier-based |e=

Data understanding: collect messages, -3
In general and from the user, that are spam (negatlve)
and legitimate (positive)

Data preparation: bag-of-words representation

Modeling: train a classifier (e.g. naive bayes)

Evaluate: on unseen emaills

Deploy: predict for new emails, retrain when user
disagrees




Principle 2a;
Machine Learning Is optimisation,

It optimises loss functions



A formal task description

Function approximation!!!
*Given:
» a space of possible instances X
« an unknown target functionf: X - Y
« a hypothesis space L containing functions X — Y

« asetofexamples E={(x, f(x))|xe X}
* aloss function loss(h,E) — R
*Find: h € L that minimizes loss(h,E)

N

“supervised”

model
Artributes Bhet a8
Matches many (not all) tasks
Hame Balance Age Employed | Write-off
Nikr 5200,000 a2 ra s
Mary §35,000 13 ¥ L
r Robert £29.000 Lzz. yes yes




Linear Regression

Notations:

1
 Datapoints X:{K.,KE,---,K,,} X, ER

» Labels y:{ylﬁyZ?“'ﬂyn} yER

« Linear decision function f () R R

f(x)=w'x

« Parameter vector w

[Slide by E. Ricci, Analysis of Patterns, 2009]



Linear Regression

.

« Goal: find a linear function Xw that approximates the labels y.
- For a new test point X the label y can be estimated as w’x.

error or “residual”

label y; =GR e
prediction waf L }_ i

- S

i

Sum Squared Error E = Z(}’; -w'X, )2 =y~ X“'Hz

i=|

[Slide by E. Ricci, Analysis of Patterns, 2009]



Linear Regression

.

« Goal: find a linear function Xw that approximates the labels y.
- For a new test point X the label y can be estimated as w’x.

error or “residual”

label y; = }__ s
prediction waf SR Co

4 ™
Loss function is Sum of Squared errors (L2 norm)
Is convex — optimise it (least squares regr.)

I

Sum Squared Error E = i (J".- -W'X, )? =|ly - X"""’"2
i=l

[Slide by E. Ricci, Analysis of Patterns, 2009]



Deep learning

handwritten number recognition:

1A
LI ':.:"_\'l,"' D]
-:)_,.}—_\-;_Eg
N %y, N
\'\"\ J{':' fully N
\\'\ coanecied _:h.
feature extraction classification

learning: (stochastic) gradient descent



Deep learning

Optimisation through stochastic gradient descent

Algorithm 1: Stochastic gradient descent

Input : training data D = {X,y},, learning rate ~

1 initialize ¢  (neural network weights)

2 for epochs do

3 for batches do

4 sample batch (X.y) ~ D

5 y + g(z.0) (forward pass: compute predictions)
6 Compute loss L(y, 1) and gradient %

7

8

9

Update @ = 6 — "'.%EI,- through backpropagation (backward pass)

end
end




Deep learning

s = BN
0
.0
Input Image —_— — 1
' - .0
h.__;— 0 Output
Fully Connected . | @ | Probabilities
Feedforward Neural .0 over the
MNetwork 0 1000-strong
8 answer
1 space
.0
Word 0
Embeddin 2
¥ .0
.0
b 4 .0 J

Input Question thm person dancing

Iearning: (stochastic) gradient descent



https://playground.tensorflow.org/

Deep learning: importance layers, number neurons?




Principle 2b:
If you look too hard at a dataset,

you'll find things that don't generalize
to unseen data




Principle 2b:
If you look too hard at a dataset,

you'll find things that don't generalize
to unseen data

[ Overfitting J




A formal task description

Function approximation!!!
*Given:
» a space of possible instances X
« an unknown target functionf: X - Y
« a hypothesis space L containing functions X — Y

« asetofexamples E={(x, f(x))|xe X}
* aloss function loss(h,E) — R
*Find: h € L that minimizes loss(h,E)

N

fi . "
o ol supervised

Matches many (not all) tasks

S,




A toy example

| Prepecessine | @.g. contour extraction
I' A

Il'ﬂd_u“'ﬂ"'*‘“'l e.g. measure length and lightness
L A

|_Clssification | machine that makes decision given the above features

Example from: Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000




Linear Separation
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Overfitting
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Reasonable Solution

widtih
224 salmon . seqa bass .
. : r The optimal tradeoff
by o BT 8 might look like this
2” '_ - " L] -‘
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Fitting Graph
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P. Adamopoulos New York University



Over-fitting in tree induction
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P. Adamopoulos
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[Need for holdout evaluation ]

Good Over-fitting

. In sample evaluation is in favor or “memorizing”
. On the training data the right model would be best

> But on new data it would be bad

P. Adamopoulos ﬂ New York University



https://playground.tensorflow.org/

Overfitting: try different ways to make it happen
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Principle 3:
Data science needs to be evaluated

INn the context of operation



Data Mining versus Use of the Model

“"Supervised” modeling:

=]
IEL R
Ao = Model
Data Mining ‘
/ :
'r
“Training” data have all ;
= r
values specified !
¥

; New @ q predlctinn\|
data
; item / R
/ Model

New data item has some value unknown (e.g., will she leave?)

P. Adamopoulos New York University



Pitfalls in DM

* Training data Is not consistent with actual use
 Bad sample
* Bad features

EX: “survivorship issues”

Lending agency wants to use ML to screen applications
and accept/reject them

* data of accepted loans + outcome
 BAD: use this to learn an outcome predictive model



Pitfalls in DM

What number iIs this?
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http://www.ccom.ucsd.edu/~cdeotte/
programs/MNIST.html
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Pitfalls iIn DM

Can we do something about this?

B HF

Highly relevant topic; related to:

- out-of-distribution detection
- classification with a reject option

[Probability of default estimation, with a reject option. Coenen, Abdullah, Guns, DSAAZ20]



Principle 4:
Entities that are similar on some attributes

often are similar on unseen attributes



Similarity

* EX: clustering

* Also solved with optimisation, e.g.
min. distances to cluster center



Similarity

Key concept: distance between objects

Euclidean, manhatten, edit distances (strings),
dynamic time warping (temporal sequences), ...

Ex. group hand-written letters together
1) based on raw pixels (but: shift, scale)
2) based on learned representation (auto-encoding)



+ 0 @ @ |«

https://cs.stanford.edu/people/karpat
hy/convnetjs/demo/autoencoder.htmi

Auto-encoding + clustering of representation

of mEurcn 1 and DNrg of neurn L §BeSe [wo VAl are Crisgn [oF e deeoder network I 101Kews W fepriduce Al /54
original numbers. As an example, supposc the 8 activates neurons [ and 210 005 and 0.9, we would plot that digit 8 at

position (0,5, 0.%) in ibe visaalizstion
Te{Sa) Lanbd 507 fel 50 tanh{S0) fe(2) | {50y {50} T84}
woh(50) | | f(784)

cycha thegugh visualined nserons ol solecied Linyes (@ mons than Z)

dravwang neurons 0 amd 1 of layer wilth index 5 {fch




Principle 5:

To draw causal conclusions,

one must pay very close attention to the presence
of (possibly unseen) confounding factors




Causality?

Machine models exploit correlation, NOT causality

Very tempting to inspect model and see
“what causes things to be true/false”



Causality?

Machine models exploit correlation, NOT causality

Very tempting to inspect model and see
“what causes things to be true/false”

E.g. coefficients of linear regression
Y = 20*X, =12*X, +300*X; +99*X, -299*X.

Which feature has most impact?


https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Principles

1.Data Science Is a process

2.ML Is optimisation of loss functions

3.ML must generalize to unseen data

4.Evaluate data science In Its operational context
5.Similar entities can have similar unseen attribs
6.Correlation, not causation



Popular practical tools

Exploratory analysis of high dim. tabular data:
tableau (web only, not open source)

Classification and regression on tabular data:
scikitlearn

Non-linear regression on large tabular data:
xdgboost

Deep learning on sensory data (images, audio, ...):
pytorch



Questions?

Slides avallable: http://nomepages.vub.ac.be/~tiasguns/ (soon)



More playgrounds?

https://cs.stanford.edu/people/karpathy/convnetjs/



