Principles of Data Science

Prof. Tias Guns tias.guns@kuleuven.be

DTAI lab, KU Leuven **EUVEN** Data Analytics lab, VUB

Virtual Summer School "Combinatorial Optimization, Constraint Programming and Machine Learning", Nov 2020

General outline

This session:

- ~60 min Principles of Data Science
- ~30 min Learning from user in CP
- ~30 min Practical (python notebook)

Afternoon session:

- ~20 min Learning from vision in CP
- ~40 min Learning from environment in CP
- ~30 min Practical (other python notebook)

Sources

Includes slides from P. Adamopoulos (NYU) and E. Ricci (Perugia)

and colleagues and collaborators, including:

Hendrik Blockeel and Luc De Raedt, KU Leuven

Paulo Frasconi, Uni Florence

Wouter Verbeke, VUB

What is data science?

"The previous new hype?"

Statistics...

Big data...

Machine Learning...

Data Analytics...

Data Mining...

Deep Learning...

Prescriptive analytics... A.I...

Data Science...

What is Data Science?

No single definition

Components:

- Data-driven (the more the better: big data)
- Interdisciplinary (math, stat, CS, ...)
- Extract knowledge from observed data

Success stories 1/3 automatic image captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

Automatic Image Caption Generation Sample taken from Andrej Karpathy, Li Fei-Fei

Success stories 2/3 product recommendation

Success stories 3/3 spam detection

000	In	box — leuven (8872 messages)		0
			Q	
Get Mail	Delete Junk Reply Reply All Forward New	Message Note To Do		Search
MAILBOXES	 From remunik biockeer Georges Gielen technews@HQ.ACM.ORG Georges Gielen technews@HQ.ACM.ORG Georges Gielen Newsletter Videndis.com Han, Elaine Tom Holvoet rosemary_mane2008@cantv.net Nick Vannieuwenhoven Roni Khardon Irving Vitra Paputungan Adrian Roderick Pearce <contact2@boutiquedelaplage.com> <c Luc De Raedt peter malfait Martijn Van Otterlo Janina Kirsch From: Michael Berthold Subject: small changes, part B Date: Fri 4 Jan 2008 13:30:17 GMT+01:00 To: bisons@bisonet.eu F @ 2 Attachments, 927 KB Save * Quick Look</c </contact2@boutiquedelaplage.com>	Subject Imas encres volgende vergadering ACM TechNews, Friday, October 10, 2008 launch event Emprego à sua medida From D. E. Shaw & Co., L.P. regarding your e [ZER-Informatica] subversion repository My Dearest one, Presentatie onderzoeksseminarie paper PhD Position RE: Examination request (Jian Alan Huang) Nouvelle collection de bijoux. Capita AI : Agenda: a-H0SN0a-0809 wandelweekend "publish and be wrong" WG: EURON upcoming courses 2008-2009	Date Received rester uay Yesterday Yesterday Yesterday Yesterday Yesterday Yesterday Today Today Today Today Today Today Today Today Today Today	A & 10:10 19:46 20:00 20:02 21:25 21:35 22:03 22:41 23:36 03:54 04:34 04:40 11:53 15:00 15:59 16:08 18:16

Common Data Mining Tasks

- Classification and class probability estimation
 - How likely is this consumer to respond to our campaign?
- Regression
 - <u>How much</u> will she use the service?
- Similarity Matching
 - · Can we find consumers similar to my best customers?
- Clustering
 - Do my customers form natural groups?

P. Adamopoulos

Common Data Mining Tasks

Task	Supervised Methods	Unsupervised Methods
*Classification	\checkmark	
*Regression	\checkmark	
Causal Modeling	\checkmark	
Similarity Matching	\checkmark	\checkmark
Link Prediction	\checkmark	\checkmark
Data Reduction	\checkmark	\checkmark
Clustering		\checkmark
Co-occurrence Grouping		\checkmark
Profiling		\checkmark

Supervised = *labelled* data, target attribute (e.g. SPAM or not) Unsupervised = *no labels* (e.g. customer records for profiling)

P. Adamopoulos

Terminology

_		Attribute	25	Target attribute
Name	Balance	Age	Employed	Write-off
Mike	\$200,000	42	no	yes
Mary	\$35,000	33	yes	no
Claudio	\$115,000	40	no	no
Robert	\$29,000	23	yes	yes
Dora	\$72,000	31	no	no

This is one row (example).

Feature vector is: **<Claudio,115000,40,no>** Class label (value of Target attribute) is **no**

Books

. . .

Most books: algorithmic or statistical focus

Focus on general principles

"In ten years' time, technologies will likely have changed such that today's choices seem quaint."

"general principles same for 20 years"

Principle 1:

Data Science is a process

From collection to utilization

Chronology

CRISP-DM process

Business understanding

000	In	box — leuven (8872 messages)			
			Q.		ī
Get Mail	Delete Junk Reply Reply All Forward New Message Note To Do		Search		
MALLEOXES	P Prom Provinces aucovers Ceorges Gielen technews@HQ.ACM.ORG Georges Gielen Provestetter Videndis.com Han, Baine Tom Holvoet rosemary_mane2008@cantv.net Nick Vannieuwenhoven Roni Khardon Irving Vitra Paputungan Adrian Roderick Pearce -cconact2@boutiquedelaplage.com> <c Luc De Raedt peter malfait Martijn Van Otterlo Janina Kirsch</c 	Subject Intax enumes volgende vergadering ACM TechNews, Friday, October 10, 2008 launch event Emprego à sua medida From D. E. Shav & Co., L.P. regarding your e [ZER-Informatica] subversion repository My Dearest one, Presentatie onderzoeksseminarie paper PhD Position RE: Examination request (Jan Alan Huang) Nouvelle collection de bijoux. Capita AI: Agenda: a-H05N0a-0809 wandelweekend "publish and be wrong" WG: EURON upcoming courses 2008-2009	Dase Received Hesterday Yesterday Yesterday Yesterday Yesterday Yesterday Yesterday Yesterday Today Today Today Today Today Today Today Today Today Today Today	* 6 19:46 20:00 20:02 21:25 21:35 22:03 22:41 23:36 03:54 04:40 11:53 15:00 15:59 16:08 18:16	
v gent Trash Too My Mac	From: Mchael Berthold Subject: small changes, part B Date: Fri 4 Jan 2008 13:30:17 GMT+01:00 To: bisons@bisonet.eu ► & 2 Attachments, 927 KB (Save *) Quick Look				

SPAM email reduces productivity, automatically remove it

Given a text message, predict whether it is spam or not

- \rightarrow text categorization, useful in general
- \rightarrow we want a <u>function</u> from message to {0,1}
- \rightarrow is called binary classification problem

Modeling: We could write a rule-based system, such as

if Title.contains("YOU HAVE WON!!!") then return Spam

Does it work well? \rightarrow evaluate

Data preparation: raw text

Evaluation

Busines

Evaluation

Deployment

Data Preparation

Hodeling

Evaluation to Business understanding:

- How do we find good rules? Knowledge elicitation or formalization may be difficult
- How do we define good? Will depend on user?

We need a system that can adapt: self-learning

An example, classificatier-based

- <u>Data understanding</u>: collect messages, in general and from the user, that are spam (negative) and legitimate (positive)
- Data preparation: bag-of-words representation
- <u>Modeling:</u> train a classifier (e.g. naïve bayes)
- <u>Evaluate:</u> on unseen emails
- <u>Deploy</u>: predict for new emails, retrain when user disagrees

Principle 2a:

Machine Learning is optimisation,

it optimises loss functions

A formal task description

Function approximation!!!

•Given:

- a space of possible instances X
- an unknown target function f: $X \rightarrow Y$
- a hypothesis space L containing functions X → Y
- a set of examples E = { (x, f(x)) | x ∈ X }
- a loss function $loss(h,E) \to \mathbb{R}$

•Find: h ∈ L that minimizes *loss*(h,E) model

> Target Attributes attribute Balance Employed Write-off Name Age Mike 42 \$200,000 no yes Mary \$35,000 33 yes no 40 Claudio \$115,000 no 60 Robert 23 \$29,000 yes yes

"supervised"

Matches many (not all) tasks

Linear Regression

Notations:

- Datapoints $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ $\mathbf{x}_i \in \mathbb{R}^d$
- Labels $\mathbf{y} = \{y_1, y_2, ..., y_n\}$ $\mathbf{y} \in R$
- Linear decision function $f(\cdot): \mathbb{R}^d \to \mathbb{R}$

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Parameter vector w

[Slide by E. Ricci, Analysis of Patterns, 2009]

Linear Regression

- ullet Goal: find a linear function Xw that approximates the labels y.
- For a new test point \mathbf{x} the label y can be estimated as $\mathbf{w}^T \mathbf{x}$.

[Slide by E. Ricci, Analysis of Patterns, 2009]

Linear Regression

- ullet Goal: find a linear function Xw that approximates the labels y.
- For a new test point **x** the label y can be estimated as $\mathbf{w}^T \mathbf{x}$.

[Slide by E. Ricci, Analysis of Patterns, 2009]

Deep learning

handwritten number recognition:

learning: (stochastic) gradient descent

Deep learning

Optimisation through stochastic gradient descent

Algorithm 1: Stochastic gradient descent
Input : training data $\mathcal{D} = \{X, y\}_{i=1}^n$, learning rate γ
1 initialize θ (neural network weights)
2 for epochs do
3 for batches do
4 sample batch $(X, y) \sim \mathcal{D}$
5 $\hat{y} \leftarrow g(z, \theta)$ (forward pass: compute predictions)
6 Compute loss $L(y, \hat{y})$ and gradient $\frac{\partial L}{\partial \theta}$
7 Update $\theta = \theta - \gamma \frac{\partial L}{\partial \theta}$ through backpropagation (backward pass)
s end
9 end

Deep learning

learning: (stochastic) gradient descent

https://playground.tensorflow.org/

Deep learning: importance layers, number neurons?

Principle 2b:

If you look too hard at a dataset,

you'll find things that <u>don't generalize</u> to unseen data

Principle 2b:

If you look too hard at a dataset,

you'll find things that <u>don't generalize</u> to unseen data

Overfitting

A formal task description

Function approximation!!!

•Given:

- a space of possible instances X
- an unknown target function f: $X \rightarrow Y$
- a hypothesis space L containing functions $X \rightarrow Y$
- a set of examples E = { (x, f(x)) | x ∈ X }
- a loss function $loss(h,E) \to \mathbb{R}$

•Find: h ∈ L that minimizes *loss*(h,E) model

'supervised"

Matches many (not all) tasks

A toy example

Example from: Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000

Linear Separation

Overfitting

Reasonable Solution

Fitting Graph

Over-fitting in tree induction

P. Adamopoulos

Need for holdout evaluation

Under-fitting

Good

Over-fitting

- In sample evaluation is in favor or "memorizing"
- On the training data the right model would be best
- But on new data it would be bad

P. Adamopoulos

https://playground.tensorflow.org/

Overfitting: try different ways to make it happen

Principle 3:

Data science needs to be evaluated

in the context of operation

Data Mining versus Use of the Model

P. Adamopoulos

Pitfalls in DM

- Training data is not consistent with actual use
- Bad sample
- Bad features
- Ex: "survivorship issues"

Lending agency wants to use ML to screen applications and accept/reject them

- data of accepted loans + outcome
- BAD: use this to learn an outcome predictive model

Pitfalls in DM

What number is this?

http://www.ccom.ucsd.edu/~cdeotte/ programs/MNIST.html

Download digits as CSV without labels Download digits as CSV with true labels

Draw a digit between 0 and 9 above and then click classify. A neural network will predict your digit in the blue square above. Your image is 784 pixels (= 28 rows by 28 columns with black=1 and white=0). Those 784 features get fed into a 3 layer neural network; Input:784 - AvgPool:196 - Dense:100 - Softmax:10. The net has 20,600 learned weights hardcoded into this JavaScript webpage. It achieves 98.5% accuracy on the famous MNIST 10k test set and was coded and trained in C. The net is explained here. The best nets are convolutional neural networks and they can achieve 99.8% accuracy. An example coded in Python with Keras and TensorFlow is here.

Additionally this page allows you to download your hand drawn images. Your images get added to your history showing above to the right. Click 'download' to receive a CSV of digits with or without labels. You can import that CSV into your neural network software for training or testing. The format of the CSV is the same as Kagele's. Each row is a digit with 784 pixels representing a 28x28 image (rows first). If you download

Pitfalls in DM

Can we do something about this?

Highly relevant topic; related to:

- out-of-distribution detection
- classification with a reject option

[Probability of default estimation, with a reject option. Coenen, Abdullah, Guns, DSAA20]

Principle 4:

Entities that are similar on some attributes

often are similar on unseen attributes

Similarity

• Ex: clustering

• Also solved with optimisation, e.g. min. distances to cluster center

Similarity

Key concept: <u>distance</u> between objects

Euclidean, manhatten, edit distances (strings), dynamic time warping (temporal sequences), ...

Ex. group hand-written letters together1) based on raw pixels (but: shift, scale)2) based on learned representation (auto-encoding)

https://cs.stanford.edu/people/karpat hy/convnetjs/demo/autoencoder.html

Auto-encoding + clustering of representation

of neuron 1 and firing of neuron 2. These two values are enough for the decoder network that follows to reproduce all 784 original numbers. As an example, suppose the 8 activates neurons 1 and 2 to 0.5 and 0.9, we would plot that digit 8 at position (0.5, 0.9) in the visualization.

Principle 5:

To draw causal conclusions,

one must pay very close attention to the presence of (possibly unseen) <u>confounding factors</u>

Causality?

Machine models exploit correlation, NOT causality

Very tempting to inspect model and see "what causes things to be true/false"

Causality?

Machine models exploit correlation, NOT causality

Very tempting to inspect model and see "what causes things to be true/false"

E.g. coefficients of linear regression $Y = 20^{*}X_{1} - 12^{*}X_{2} + 300^{*}X_{3} + 99^{*}X_{4} - 299^{*}X_{5}$ Which feature has most impact?

Principles

- 1.Data Science is a process
- 2.ML is optimisation of loss functions
- 3.ML must generalize to unseen data
- 4.Evaluate data science in its operational context
- 5.Similar entities can have similar unseen attribs
- 6.Correlation, not causation

Popular practical tools

- Exploratory analysis of high dim. tabular data: *tableau* (web only, not open source)
- Classification and regression on tabular data: *scikitlearn*
- Non-linear regression on large tabular data: *xdgboost*
- Deep learning on sensory data (images, audio, ...): *pytorch*

Questions?

Slides available: http://homepages.vub.ac.be/~tiasguns/ (soon)

More playgrounds?

https://cs.stanford.edu/people/karpathy/convnetjs/