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• Introduction: OR and ML a bright future ?
• our work arena: the CVRP
• Attempt 1: Neighborhood ranking in VNS
• Intermezzo: Aggregate bounding
• Attempt 2: Characterization of solution quality
• Some preliminary conclusions



Operations Research and Machine Learning: a bright future

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 2

• Operations Research (a.k.a. Prescriptive Analytics) has an 
established and industry-recognized capability in supporting 
decision making by  solving (combinatorial) optimization 
problems 

• OR methods work very well with accurate 
(deterministic) data and for structured 
cases 😀

• unfortunately most problems are large, 
badly defined and with non-deterministic 
data 😢



Operations Research and Machine Learning: a bright future
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• Machine Learning has an established capability of extracting 
from large quantities of data models that reproduce their 
behavior
• ML may be used effectively to predict the 

outcome associated with data patterns,
• to provide a fast approximation of a system 
• to identify behaviors from the observation of 

data 😀
• ML  methods outcomes provide valuable 

insights but are not generally sufficient for 
decision making 😢



What ML can do for OR methods
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• Fast approximation of input/output patterns provided by ML algorithms 
may be used to replace computationally heavy tasks within OR 
algorithms (e.g. constraint or objective function evaluation)

• Learning mechanisms can be incorporated to guide the algorithm or to 
select the most effective components depending on
– preliminary training of the algorithm
– runtime observation of the algorithm’s behavior

• By combining ML&OR shortcomings of either method may be mitigated

• Research in this field is still at a very early stage but activity is  large and 
some promising results are coming
– see Benjo,Lodi,Prouvost https://arxiv.org/pdf/1811.06128.pdf

https://arxiv.org/pdf/1811.06128.pdf


Goal of this lecture
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• Illustrate some (preliminary) attempts towards the integration
of ML techniques for the benefit of heuristic methods

• We will focus on a well-known combinatorial optimization
problem: the Capacitated Vehicle Routing Problem (CVRP)
– Attempt 1: Neighborhood ranking in VNS
– Intermezzo: Aggregate bounding
– Attempt 2: Characterization of solution quality
– Some preliminary conclusions



Our Work Arena
The Capacitated Vehicle Routing Problem
(CVRP, the godfather of all CO problems)



A CVRP Instance

Customer 𝑖

Depot 0

(𝑥! , 𝑦!)

(𝑥", 𝑦")

∞ num. of vehicles 
with capacity 𝑄

requires 𝑞! goods

Euclidean distance 
(cost)

Undirected and complete 
graph

Capacitated Vehicle Routing Problem 
(CVRP)

• 1 depot, n customers with 
demand qi

• (K) identical vehicles with 
capacity Q

• only capacity constraints and 
minimize routing cost
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A CVRP Solution

Route
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Main references

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 9
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Chapter 5

Classical Heuristics for

the Capacitated VRP

Gilbert Laporte
Frédéric Semet

5.1 Introduction

Several families of heuristics have been proposed for the Vehicle Routing Problem
(VRP). These can be broadly classified into two main classes: classical heuristics de-
veloped mostly between 1960 and 1990, and metaheuristics whose growth has occurred
in the last decade. Most standard construction and improvement procedures in use to-
day belong to the first class. These methods perform a relatively limited exploration of
the search space and typically produce good quality solutions within modest comput-
ing times. Moreover, most of them can be easily extended to account for the diversity
of constraints encountered in real-life contexts. Therefore, they are still widely used in
commercial packages. In metaheuristics, the emphasis is on performing a deep explo-
ration of the most promising regions of the solution space. These methods typically
combine sophisticated neighborhood search rules, memory structures, and recombina-
tions of solutions. The quality of solutions produced by these methods is much higher
than that obtained by classical heuristics, but the price to pay is increased computing
time. Moreover, the procedures are usually context dependent and require finely tuned
parameters which may make their extension to other situations difficult. In a sense,
metaheuristics are no more than sophisticated improvement procedures and they can
simply be viewed as natural enhancements of classical heuristics. However, because
they make use of several new concepts not present in classical methods, they will be
covered separately in Chapter ??.

Classical VRP heuristics can be broadly classified into three categories. Con-
structive heuristics gradually build a feasible solution while keeping an eye on solution
cost, but do not contain an improvement phase per se. In two-phase heuristics, the
problem is decomposed into its two natural components: clustering of vertices into
feasible routes and actual route construction, with possible feedback loops between
the two stages. Two-phase heuristics will be divided into two classes: cluster-first,
route-second methods and route-first, cluster-second methods. In the first case, ver-
tices are first organized into feasible clusters, and a vehicle route is constructed for
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Chapter 6

Metaheuristics for the

Capacitated VRP

Michel Gendreau
Gilbert Laporte
Jean-Yves Potvin

6.1 Introduction

In recent years several metaheuristics have been proposed for the VRP. These are
general solution procedures that explore the solution space to identify good solutions
and often embed some of the standard route construction and improvement heuristics
described in Chapter ??. In a major departure from classical approaches, metaheuris-
tics allow deteriorating and even infeasible intermediary solutions in the course of the
search process. The best known metaheuristics developed for the VRP typically iden-
tify better local optima than earlier heuristics, but they also tend to be more time
consuming.

As far as we are aware, six main types of metaheuristics have been applied to the
VRP: 1) Simulated Annealing (SA), 2) Deterministic Annealing (DA), 3) Tabu Search
(TS), 4) Genetic Algorithms (GA), 5) Ant Systems (AS), and 6) Neural Networks
(NN). The first three algorithms, SA, DA and TS, start from an initial solution x1,
and move at each iteration t from xt to a solution xt+1 in the neighborhood N(xt) of
xt, until a stopping condition is satisfied. If f(x) denotes the cost of x, then f(xt+1)
is not necessarily less than f(xt). As a result, care must be taken to avoid cycling.
GA examines at each step a population of solutions. Each population is derived from
the preceding one by combining its best elements and discarding the worst. AS is
a constructive approach in which several new solutions are created at each iteration
using some of the information gathered at previous iterations. As was pointed out by
Taillard et al. [63], TS, GA and AS are methods that record, as the search proceeds,
information on solutions encountered and use it to obtain improved solutions. NN is a
learning mechanism that gradually adjusts a set of weights until an acceptable solution
is reached. The rules governing the search differ in each case and these must also be
tailored to the shape of the problem at hand. Also, a fair amount of creativity and
experimentation is required. Our purpose is to survey some of the most representative
applications of local search algorithms to the VRP. For generic articles and textbooks
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Chapter 4

Heuristics for the Vehicle
Routing Problem

Gilbert Laporte
Stefan Ropke
Thibaut Vidal

4.1 Introduction
In recent years, several sophisticated mathematical programming decomposition algo-
rithms have been put forward for the solution of the VRP. Yet, despite this effort, only
relatively small instances involving around 100 customers can be solved optimally, and the
variance of computing times is high. However, instances encountered in real-life settings
are sometimes large and must be solved quickly within predictable times, which means
that efficient heuristics are required in practice. Also, because the exact problem defini-
tion varies from one setting to another, it becomes necessary to develop heuristics that are
sufficiently flexible to handle a variety of objectives and side constraints. These concerns
are clearly reflected in the algorithms developed over the past few years. This chapter
provides an overview of heuristics for the VRP, with an emphasis on recent results.

The history of VRP heuristics is as old as the problem itself. In their seminal paper,
Dantzig and Ramser [19] sketched a simple heuristic based on successive matchings of ver-
tices through the solution of linear programs and the elimination of fractional solutions
by trial and error. The method was illustrated on an eight-vertex graph. It was not pur-
sued, but may have inspired the developers of matching-based heuristics (see Altinkemer
and Gavish [3], Desrochers and Verhoog [20], and Wark and Holt [91]). Since then, a
wide variety of constructive and improvement heuristics have been proposed, culminating
in recent years with the development of powerful metaheuristics capable of computing
within a few seconds solutions whose value lies within less than one percent of the best
known values.

The field of VRP heuristics is now so rich that it makes no sense to provide an ex-
haustive compilation of them in a book chapter such as this. Instead, we have decided
to focus on methods and principles that have withstood the test of time or present some
interesting distinctive features. For a more complete description of the classical heuristics
and of the early metaheuristics, we refer the reader to the two chapters by Laporte and
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Background
some previous works on integrating

ML within CVRP heuristics



Previous/ongoing work on using ML for VRP
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• Arnold & Sorensen (C&OR 2018):  What makes a VRP solution
good? The generation of problem-specific knowledge for 
heuristics

• seminal paper trying to determine features which
characterize good/bad solutions

• such features may be favoured/penalized in a heuristic solver



Solution and instance features
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• 18 features characterizing the instance and the solution were
identified

Instance features
1. Number of customers
2. Number of routes
3. Degree of capacity utilization
4. Average distance between each pair of customers
5. Standard deviation of the pairwise distance between customers
6. Average distance from customers to the depot
7. Standard deviation of the distance from customers to the depot
8. Standard deviation of the radians of customers towards the depot

Solution features
1. Average number of intersections per customers
2. Longest distance between two connected customers, per route
3. Average distance between depot to directly-connected customers
4. Average distance between routes (their centers of gravity)
5. Average width per route
6. Average span in radian per route
7. Average compactness per route, measured by width
8. Average compactness per route, measured by radian
9. Average depth per route
10. Standard deviation of the number of customers per route



Training set generation
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• A set of 5000 small (20-50 cust.) and 1000 larger (70-100 cust.) 
random instances is generated with different capacity and 
depot positions (8 classes)

• For each instance they generated
– a good solution by using the Arnold and Sorensen C&OR 2017 

heuristic
– two less good solutions within 2% and 4% from the good one
– by using the A&S heuristics (H1) and a randomized Clarke&Wright (H2)
– in total 4 datasets {2%,4%} X {H1,H2} with 10000 small and 2000 large 

datapoints per class
– 192,000 solutions in total labeled near_optimal/non_optimal



Classification
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• they used different
classifiers (DT, RF, SVM) to 
predict solution quality
using 5-fold Cross 
Validation and obtained
60-90% prediction
accuracy

• Using simple Decision Tree
based on just one solution
feature they identified the 
most predictive features

Solution features
1. Average number of intersections per customers
2. Longest distance between two connected customers, 

per route
3. Average distance between depot to directly-

connected customers
4. Average distance between routes (their centers of 

gravity)
5. Average width per route
6. Average span in radian per route
7. Average compactness per route, measured by width
8. Average compactness per route, measured by radian
9. Average depth per route
10. Standard deviation of the number of customers per 

route



Use of knowledge to guide heuristics
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• The outcome of previous analyses identified solution width
(S5) as a feature with high predictive value

• They used a Guided LS  effective heuristics in which edges
which increase solution width are penalized

• The overall GLS is very good on the famous X benchmark and 
other benchmark

• Actually the knowledge contribution is quite marginal (the 
GLS is indeed already very good !)



More on A&S features
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• Recently, Lucas, Billot, 
Sevaux (C&OR 2019) 
analyzed in depth the 
features proposed by 
A&S

• They used random
forests to rank the
expalantory importance
of the various features
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Fig. 2. Importance plot of predictive variables. 
Table 3 
Experiments on the utility of I1 . . . I8. 

Features Random forest Support-Vector machine 
I1...I8, S1...S10 75.16% 77.28% 
S1...S10 76.10% 77.16% 

acteristics. Each pair Algorithm/Features is executed 50 times, with 
different training and test sets. Table 3 details the average results. 
We can observe a very low evolution of the performances with and 
without knowledge of I1...I8. These features do not affect the qual- 
ity of the estimations. As a conclusion, features I1...I8 are useless 
for the set of instances “gap2_large_center_highVariance.csv”. 
4. No need for machine learning ? How PCA enables a 
synthetic view of the solutions characteristics 

As seen in Section 3 , there are many methods of machine learn- 
ing giving some keys to understand each feature significance. Nev- 
ertheless, this section will show that a classical factorial analysis, 
namely Principal Component Analysis (PCA) is able to address most 
of the issues tackled by the authors. 
4.1. Preliminary step: correlation analysis 

Fig. 3 shows the Pearson correlation coefficient between all 
pairs of features. A value near 1 is equivalent to a strong corre- 
lation. A value near −1 is equivalent to a strong anti-correlation. 
Finally, a value near 0 means the features have no correlation. As 
notified on the right side of the legend, the colour of each circle 
indicates if the correlation is positive or negative and its degree by 
the intensity of the colour. The size of the circles grows with the 
absolute value of the correlation. 

With a correlation value greater than 0.7, features S5, S6, S7 
and S8 are peer-to-peer strongly correlated. The same applies to 
S4 and S9. Oppositely, with a correlation value lower than −0.7, 

Fig. 3. Correlation plot of the solution metrics. 
features S3 and S10 are anti-correlated. This very simple descrip- 
tive statistical analysis points out initial redundancies between the 
chosen variables. This trend has been checked for the other sets of 
instances. Correlations between features S5, S6, S7 and S8 are ob- 
served for each set of instances. Features S4 and S9 are strongly 
correlated in 9 sets of instances and non-correlated in the other 
sets of instances. Features S3 and S10 are always more or less anti- 
correlated, with correlation always less than −0.4. Finally, features 
S3 and S6 are strongly anti-correlated in at least 11 sets of in- 
stances. Once again, it is possible to reach global conclusions for 
all sets of instances. 
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More on A&S Features
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• they also studied the 
correlation between S
features

• … and performed Principal
Component Analysis

• I1-I8 and S2 can be removed
"a priori" slighlty improving the 
overall accuracy
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Fig. 4. PCA with the first two dimensions. 
4.2. PCA: principle 

The Principal Component Analysis (PCA) projects the initial vari- 
ables onto a factorial space, i.e. the principal components, which 
are linear combinations of the S1 to S10 variables. Figs. 4 and 5 are 
a part of those projections onto two of the most significant dimen- 
sions (a dimension is significant if it explains a large part of vari- 
ability). On those projections, the longest an arrow, the best their 
corresponding features are represented on the factorial space. The 
angle between 2 arrows indicates the correlation between 2 as- 
sociated features. The blue ellipse (E1) contains 95% of the near- 
optimum solutions, the red ellipse (E0) contains 95% of the non- 
optimal solutions. 
4.3. PCA results 

Fig. 4 represents the correlation circle over the two most signif- 
icant dimensions which explain all together 59% of the data vari- 
ance (respectively 39% and 20% of the variability is explained by 
Dim1 and Dim2). With respect to the length of their arrows, fea- 
tures S 6, S 5, and S 7 are well represented, oppositely to S 2, very 
badly represented. The angle between features S 6 and S 7 is ex- 
tremely low, indicating a strong correlation between them. On the 
opposite there is no correlation between features S 1 and S 8, with 
an angle close to π

2 . Finally, the angle between features S 3 and S 10 
is close to π and shows anti-correlation between them. Regard- 
ing the solution quality, the blue and red ellipses, containing re- 

spectively 95% of the near-optimal and non-optimal solutions, are 
mostly intersected. 

By observing which features are most described by each di- 
mension, we can deduce the meaning of each one. We keep only 
features with correlation larger than 0.7 in absolute value with 
the different dimensions. Thus, the first dimension is mainly rep- 
resented by features S 6, S 5, S 7 and S 8. All these features aggre- 
gated in dim 1 are different ways to represent the compactness 
of routes. Consequently, dim1 represents the compactness of each 
route. Equivalently, dim2 is represented by features S 9 and S 4. 
Thus, this dimension represents how deep and well-balanced are 
the routes. 

Considering a third dimension helps to better explain differ- 
ences between near-optimal and non-optimal solutions. The third 
dimension represents mostly the distance between the first/last 
customer and the depot. Fig. 5 adds more precision about the fea- 
tures and the differences between near-optimal and non-optimal 
solutions. Blue and red ellipses are less intersected on the pro- 
jection with respect to Dim3. While Fig. 4 shows a bad repre- 
sentation of feature S 2, this trend is confirmed by Fig. 5 , prov- 
ing that looking at the longest distance between two connected 
customers is not as efficient as it seemed. Regardless which di- 
mensions are used, the angles between arrows associated to fea- 
tures S 5, S 6, S 7, S 8 are always small, showing their correlations. 
It seems logical as they correspond to four different representa- 
tions of routes compactness. Theses features are mainly associ- 
ated with non-optimal solutions: keeping compact routes is not 
a priority and we have to minimize theses features as much as 
possible. 
4.4. Toward a refined variable selection process for machine learning 

The factorial analysis helps us to improve the variables selec- 
tion process. It also opens a new area for improving machine learn- 
ing predictions. First, in order to validate our hypothesis about the 
uselessness of features I1.I8, several experiments have been carried 
out. For each test, 50 random forests are created, containing ex- 
actly 20 0 0 trees. Initially, the random forest methods success to 
classifies 75.16% of the tested instances, on average, with all I1 to 
I8 and S1 to S10. If we classify only with features S1 to S10, we 
obtain a better average success of 76.1%. Moreover, removing fea- 
ture S2 allows to reach an accuracy score of 76.32%. Consequently, 
removing a priory useless features increases slightly this accuracy. 
Hence, we have proven uselessness of features I 1 . . . I 8 and S 2 for 
predicting the efficiency of a solution. Finally, adding useless fea- 
tures seems to reduce the impact of significant features, reducing 
the accuracy of the final prediction. 

Fig. 5. Some others projections for PCA. 



Other works on using ML for VRP
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• Schröder, Gauthier, Schneider, Irnich (Odysseus 2018)
– use of ML to define the sparsification factor in a granular search
– use of ML to accelerate sequential local search

• Arnold, Vidal, Santana, Sorensen (Verolog 2019): 
– frequent pattern mining in a set of elite solutions
– during a "pattern injected local search" (PILS) patterns are used to 

define moves in which:
• incompatible edges are removed, pattern edges are reconnected and 

remaining routes are optimally reconnected



Attempt #1

Neighborhood ranking in VND
joint work with L. Accorsi, M. Lombardi, M. Milano



Local Search

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 20

• All existing heuristic approaches for the CVRP (as well as for 
most Combinatorial Problems) rely on local search

• For CVRP several relatively simple neighborhoods are widely 
used and examined hundreds of thousands of times.
– 2-opt and 2-opt*
– relocate (one or more customers)
– exchange (one or more customers)
– ...
– cardinality is typically O(n2)



Local Search
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• to achieve acceptable computing times 
– Granular neighborhoods (Toth&V., 2005), 
– Sequential search (Irnich et al. 2006)
– Static Move Descriptors (Zachariadis&Kiranoudis, ‘10, Beek et al. ‘18, 

Accorsi and V., 2020)

• Simple (granular) neighborhoods are often combined and 
searched together to achieve better performance

• A common approach to combine neighborhoods is Variable 
Neighborhood Descent (Mladenovich&Hansen ‘97)



Variable Neighborhood Descent
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• Variable Neighborhood Descent (VND): 
– k neighborhoods N1,...,Nk

determine initial candidate solution s 
i := 1
Repeat: 

choose a most improving neighbor s0 of s in Ni

If g(s0) < g(s) then s := s0 ; i := 1 
Else i := i + 1 

Until i > k 

N. are typically ordered according to increasing size/effectiveness or randomly (RVND) 



Our goal
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• in a VND setting, 
– using ML techniques to identify the most promising neighborhood     

(or that none of them will be able to improve a given solution)
– enables computational savings that could be used to perform a 

more fruitful search.
• focus on the CVRP and train an Artificial Neural Network for 

ranking neighborhoods at search time.
• preliminary experimental results show that using an informed 

neighborhood selection strategy for local search helps in 
avoiding the exploration of unpromising neighborhoods. 



12 Neighborhoods considered 
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• relocate/exchange
1. one_zero
2. one_one,
3. two_zero,
4. two_one,
5. two_two,
6. three_zero,
7. three_one,
8. three_two,
9. three_three,

• 3 intra and inter-route 2-opt exchanges (split, tail, intra) 
• 2 different shaking: 

– random 1-0 exchanges
– removal of some routes and reinsertion of customers



The value of a neighborhood exploration: 
A preliminary analysis 

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 25

• We run a VND with 12 neighborhoods + shaking and stop 
after a given # of non improving iterations

• We simulate the following strategies
– Randomized VND (baseline) 

• random N. permutation
– Best VND (optimal classifier without errors) 

• evaluate all N. and always select the most improving one
– Probabilistic BVND (sub-optimal classifier)

• evaluate all N. and roulette-wheel selection with probability proportional to the 
improvement



The value of a neighborhood exploration 
A preliminary analysis 
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• We computed the average value of a neighborhood 
exploration

Values are averaged across #runs=10 and all instances of X dataset

• Ratio express what is the average improvement of any neighborhood on any solution
• BVND and PVND can identify local optima and thus stop prematurely the VND

Strategy Total 
improvement

# applications Ratio Appl. Savings
wrt RVND

RVND 7,5 * 10^5 3,6*10^7 0,02% --

BVND 8,2 * 10^5 2,1 * 10^6 0,22% 1600%

PBVND 8,1 * 10^5 3,1 * 10^6 0,21% 1000%



Definition of the training set
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• We randomly selected 60 out of 100 instances from the X 
dataset introduced by Uchoa et al (2014) 

• Generate a set of solutions 
– starting from Clarke&Wright ‘64 solution S
– use an ILS-like framework on the current S

• applying a single descent with each one of the 12 neighborhoods
• select the best improving operator and the corresponding solution S’
• iterate to a local optimum and possibly update S
• shaking on the globally best solution S

• This way we collected a set of 22,113,348 solutions together 
with the best improving operator



Definition of the training set
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• for each solution we store the 18 f.p. features proposed by 
Arnold&Sorensen + class (best improving operator)

• class = shaking if solution is a LO for all N.

Instance features
1. Number of customers
2. Number of routes
3. Degree of capacity utilization
4. Average distance between each pair of customers
5. Standard deviation of the pairwise distance between customers
6. Average distance from customers to the depot
7. Standard deviation of the distance from customers to the depot
8. Standard deviation of the radians of customers towards the depot

SoluMon features
1. Average number of intersecMons per customers
2. Longest distance between two connected customers, per route
3. Average distance between depot to directly-connected customers
4. Average distance between routes (their centers of gravity)
5. Average width per route
6. Average span in radian per route
7. Average compactness per route, measured by width
8. Average compactness per route, measured by radian
9. Average depth per route
10. Standard deviaMon of the number of customers per route



Classifier based on Artificial Neural Network 
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• We trained a fully connected neural network with 4 total layers
– input layer with 18 input units
– hidden layer with 64 hidden units and relu activation function
– hidden layer with 32 hidden units and relu activation function
– output layer with 13 output units and softmax activation function: 12 local search 

operator and 1 shaking operator (= Local Optimum)
• Training using the categorical crossentropy loss function (stardard

choice for multiclass classification with neural networks) and lasted 10 
epochs. 
– Accuracy results were around 40% (most probably related to the features we use). 
– More epochs did not allow to obtain better accuracy results.



Use within optimization
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• VND with 12 neighborhoods where order is
a) Static (statistics-based): 

– N. are sorted according to their success in the training set
b) Random
c) ML-based: 

– The trained neural network is used to predict, given a solution, the 
probability of each neighborhood to be the most improving one on 
that solution.

– Neighborhoods are sorted according to their probability in a 
decreasing order and used in that order



Experiments
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• Goal: compare the effectiveness of the three different 
approaches. 

• To have a fair comparison, we evaluate the number of attempts to find 
an improving solution/operator (and the quality of such improvement) 
on the same set of starting solutions. 

• solution generator (to create 1,000 solutions per test instance)
– initialized with C&W solution, 
– subsequent solutions are obtained with an ILS based on the same neighborhoods 

executed in a RVND fashion and run for a number of iterations randomly chosen 
between 1 and 10. 

– The final solution that will be returned is shaken and has a probability of 0.5h to be a 
local optimum for h operators. 

– We used the same generator both in experiment 1 and 2.



Best operator ranking
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impr. threshold = 0 impr. threshold = 0.001

local optimum
local optimum



Experiment #1
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• Given 40% solutions of the test set
• for each instance we generated 1000 solutions 
• we compared the 3 VNDs and computed  

– how many attempts were necessary to find an improving N.
– what was the improvement of the first improving N. in terms of % gap. 

VND ordering # Attempts % savings % Gap

Static 1.98 - 2.88

Random 2.39 +21% 2.58

NN-based (Thr=0) 1.44 -27% 2.88

NN-based (Thr=0.001) 1.37 -31% 2.65



Experiment #2
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• Given 40% solutions of the test set
• we compared the 3 VNDs and computed  

– how many neighborhoods were explored to reach a local optimum 
(in a VND using the different neighborhoods)

– what was the improvement in terms of % gap. 

VND ordering # N. explored % savings % Gap

Static 27.79 - 3.70

Random 62.84 +126% 3.62

NN-based (Thr=0) 18.76 -32% 3.47

NN-based (Thr=0.001) 11.62 -59% 3.16



Attempt 1: Conclusions
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• ML may enable consistent time savings in multi-neighborhood 
local search while preserving solution quality

• Very promising results obtained 

… However:
• we performed a preliminary "In field" testing within a high-

quality ILS
• Current features extraction is O(n2) è the associated 

overhead is not compensated by the potential saving of NN-
based VND



Attempt 1: future work
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• incremental feature evaluation or use just a selection of 
features (following Lucas et al. findings)

• better features (linear-time extractable, see later) ?
• compute NN-based only every H iterations and then keep it 

fixed
• similar testing on the shaking step which is of crucial 

importance for ILS



Intermezzo:

Aggregate Bounding
Joint work with L. Accorsi



Can we estimate the value of the Optimal Solution?

• To prematurely stop the search in heuristic algorithms once 
we are close enough

• In (heuristic) B&B algorithms to cut unpromising paths?
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The ML way
• Train a neural network to predict the value of the optimal solution

of a given instance
– A one-shot task
– Extremely difficult!

• What we try to do instead:
• Train a neural network to predict the gap of a solution from the 

optimal solution
– We can easily retrieve the value of the optimal solution from the gap and 

the solution cost
– For each instance we can have a lot of predictions
– Aggregate them and hope they are going towards the right direction!
– A wrong prediction will harm but less than in the first scenario
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Training

• Train a Convolutional Neural Network on a "top secret"          
2D CVRP (linearly extractable) solution representations
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• It's somehow a "picture" 
of a solution

• NN are succesfully used
in image recognition

• are pictures of good
and bad solutions
"different"?



Visualizing solutions with different qualities

- Images tend to became larger on worse solutions because 
containing worse routes

- However, it is not always that clear for a human eye!

Gap = 0.01% Gap = 3% Gap = 6% Gap = 8%
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Aggregate bounding
on a single instance
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• Train a NN to estimate, given a solution
s,  its gap wrt the optimal/BK solution

• How to use that on an unknown CVRP 
instance:
1. Sample some solutions during the search
2. For each sampled solution s compute an 

estimated value opt(s)
3. Aggregate the estimations to 

approximate the optimal solution value 
for the instance during the search



Preliminary testing on a test set

• Sample local optima during
algorithm evolution
– Features computation and prediction

has a cost
– Try to minimize their impact

• Incrementally compute the mean
optimal value
– Mean error of about 0.20!
– High std dev
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Conclusions on aggregate bounding
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• preliminary experiments on the new features are promising
• further testing on their use for other purposes
• gap estimation may be useful for early stop of a heuristic



Attempt #2:

Data-based Guided Optimization 
for the CVRP
joint work with L. Accorsi



Goal

• Can we study characteristics of high-quality solutions to 
design better algorithms?

• The Machine Learning/Data Mining Approach:
– Let a model identify recurring patterns found in high-quality solutions
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Not as easy as a Standard ML Task

• We are not interested in maximizing a ML metric (e.g., 
accuracy) but in guiding an algorithm possibly composed of 
several complex interconnected components

• Any change in an existing algorithm does not necessarily 
produces better final outcome
– Particularly in algorithms already producing high-quality results

• Analysis of what a change implies on the overall algorithm 
may not be trivial
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Challenges
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1. The power of randomization (probability)
– Relying on randomness typically generalizes much better to different 

populations than any deterministic choice
2. High baseline

– Improving results generated by state-of-the-art algorithms is difficult
– Years of high-quality human knowledge vs biased dataset of raw data

3. Prediction overhead
– Additional computation is required for features extraction and 

inference
– Guided decisions must substantially improve quality (difficult because 

of 2) or cut computing time to be useful in practice



Arnold & Sorensen Solution’s Characterization
• Featurize a solution by using aggregate values

– Average routes width
– Average routes depth
– ...

• For randomly generated instances with 20-100 customers classify 
solutions as near-optimal or sub-optimal (2%-4%)

• Interesting accuracy results of up to 90% obtained with a decision 
tree on a cluster of similar instances with 70-100 customers to 
classify near-optimal solutions from sub-optimal (4%) 

• Accuracy decreases when classifying near-optimal solutions from 
slightly better sub-optimal solutions (2%)
– They probably share a lot of characteristics!
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Solutions are Complex Objects

• Can you discriminate a near-optimal solution from a sub-
optimal one by using aggregate characterizations?
– Everything gets extremely diluted
– Think of an optimal solution having 100 routes for a CVRP instance in 

which 1 or 2 route(s) are changed
• Quality can degrade at will
• Aggregate features would not significantly change

• Overcoming the near-optimal and sub-optimal solution 
classification
– If not trivially bad, a sub-optimal solution will just be such because 

defined by the wrong set of routes
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Solutions as Set of Routes

• Work instead with routes situated in their context
• Solution features as the set of features of individual routes 

normalized according to the solution itself
– Load ratio
– Route cost contribution to the solution
– Mean distance between interconnected customers
– ...
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Full Solution Dataset

• From the X instances we computed 500 millions distinct  
solutions describing a broad range of qualities composed of 
450 millions distinct routes
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Sampled Solution Dataset

• 10 million high-quality (<=1%) distinct solutions
• 10 million low-quality (>1%) distinct solutions
• Total number of about 600 million not necessarily distinct 

routes classified as
– Shared: when occurring in solutions both in high-quality and low-

quality solutions
– High-quality: when occurring in high-quality solutions only
– Low-quality: when occurring in low-quality solutions only

• Note that labels strictly depend on the sampled dataset
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Shared, High-quality and Low-quality routes

• About 80% of the routes are shared
• Just 10% of them are peculiar of high-quality and low-quality 

solutions

• Is an aggregate solution characterization really meaningful?
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Sampled Dataset Analysis

• About 94% low-quality solutions contain at least one low-
quality route

• About 6% low-quality solutions contain only shared routes
– Those are solutions very close to the hard threshold of 1% gap
– Average gap 1.24 ± 0.24

• About 49% high-quality solutions are entirely made of shared 
routes
– Possibly be related to the routes' distribution 
– There are less ways of composing high-quality solutions and a lot 

more to define low-quality ones
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Sampled Dataset Analysis

• About 94% low-quality solutions contain at least one low-
quality route

• Idea: get rid of low-quality routes!

• Applications: 
– Guide a heuristic optimization processes
– Skip low-quality routes in SP-based matheuristics
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Sampled Route Dataset 
(out of the 600 million non distinct routes)

• 1 million low-quality routes
• 500 thousand high-quality routes
• 250 thousand shared routes from low-quality solutions
• 250 thousand shared routes from high-quality solutions

• A binary classification
– Interesting routes
– Not interesting routes
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Use-oriented ML model selection

• Model purpose is to be embedded into state-of-the-art 
algorithm
– Fast features extraction from solution

• Simple handcrafted features linearly extractable
– Fast prediction

• Let’s use the simplest model having good accuracy results
– Decision tree with at most 5 levels
– Has accuracy slightly worse than more complex models but it has a 

very fast prediction time
– 10-fold cross validation: mean accuracy 77%
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Testing the idea 
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• To have a convincing validation of the idea we must plug iit
into a state-of-the-art method …

• … improving an average algorithm is not so difficult
• … and see if it allows for:

– final solution quality improvement, or
– faster convergence to good solutions, or
– … at least, some speedup while preserving quality !

• We used as benchmark FILO, by Accorsi and Vigo 2020 
(submitted 🤞)



FILO
A Fast and Scalable Heuristic for the Solution of 

Large-Scale Capacitated Vehicle Routing Problems

Luca Accorsi1 and Daniele Vigo1,2

1 DEI «Guglielmo Marconi», University of Bologna
2 CIRI ICT, University of Bologna



Motivation

• State-of-the-art (heuristic) CVRP algorithms often exhibit a 
quadratic growth
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Goal

• Designing a fast, naturally scalable and effective heuristic
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Fast ILS Localized Optimization (FILO) recipe

• ILS-based framework
• Local Search Acceleration Techniques
• Pruning Techniques
• Careful Design
• Careful Implementation
• Careful Parameters Tuning
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Improvement procedures

(Optional)
Route Minimization

Core Optimization
(where most of the time is spent)

By using a sophisticated
Local Search Engine

Perform a shaking (in a ruin-and-recreate fashion)

Re-optimize the shaken area

If not stopping condition, go to 

1

2

3

Abstract ILS procedure

1
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Local search engine

• Several operators explored in a VND fashion
– Hierarchical Randomized Variable Neighborhood Descent

• Acceleration techniques for neighborhood exploration
– Static Move Descriptors

• Pruning techniques
– Granular Neighborhoods and Selective Vertex Caching
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Computational results

• Two versions of FILO
• FILO 100𝐾 core optimization iterations
• FILO (long) 1𝑀 core optimization iterations

• On standard instances
• X dataset by Uchoa et al. (2017)

• On very large-scale instances
• B dataset by Arnold, Gendreau, and Sörensen (2019)
• K dataset by Kytöjoky et al. (2007)
• Z dataset by Zachariadis and Kiranoudis (2010)
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X 
Uchoa et al. (2017)
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Very large instances

KGLS

KGLS (long)

FILO

FILO (long)
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B (3K – 30K)
Arnold, Gendreau, and Sörensen (2019)

K (≈8K – 12K)
Kytöjoky et al. (2007)

Z (3K)
Zachariadis and Kiranoudis (2010)

Algorithms
• KGLS, KGLS (long) - Arnold, Gendreau, and Sörensen (2019)
• GVNS - Kytöjoky et al. (2007)
• PSMDA - Zachariadis and Kiranoudis (2010)
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Plugging the idea into FILO
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• Shaking performed in ruin-and-recreate fashion
– Select a "seed customer"
– remove a set of customers belonging to routes "close" to the seed

• Standard: shaking seed is a randomly selected customer
• Guided: bias the seed selection towards customers belonging 

to low-quality routes



Preliminary Experiments
(on the X instances from which we extracted the training routes)
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% gap

Iterations

Standard: 0.36%
Guided: 0.34%
Both in 2.12 minutes!
During the algorithm we do 
not recompute features if
not needed

At least it does not harm!



Preliminary Experiments
(on the 100 largest instances from the Extended Benchmark of Uchoa et al. 2017)
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BKS values not available

Using Standard as baseline
Standard: solved in 2.08 
minutes
Guided: -0.007% in 2.11 minutes

Not statistically significant
results but:
• Better final solutions value in 

57 instances out of 100
• Average faster convergence to 

better solutions

% gap wrt min found in our runs

Iterations



Attempt 2: conclusions

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 72

• Route feature analysis has a better explanatory power than
aggregate solution features in distinguishing good and bad
solutions

• Identifying non-interesting routes may be profitably used in 
high-quality heuristics

• … and it works ! (or at least it does not harm !) 



Attempt 2: future work
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• complete and submit the paper as soon as possible !



Overall conclusions
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• ML has great potential in the improvement of optimization
algorithms

• Feature selection is of paramount importance to obtain
meaningful results and keep at bay the computational
overhead

• It is important that the computational validation is performed
with high quality heuristics

• … there is a lot of work to do !
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