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Operations Research and Machine Learning: a bright future

« Operations Research (a.k.a. Prescriptive Analytics) has an
established and industry-recognized capability in supporting
decision making by solving (combinatorial) optimization

problems

How can we
4 make it happen?

* OR methods work very well with accurate What
(deterministic) data and for structured Why did i et
cases & —

* unfortunately most problems are large,
badly defined and with non-deterministic .
data @ el —

What
happened?

Value
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Operations Research and Machine Learning: a bright future

 Machine Learning has an established capability of extracting
from large quantities of data models that reproduce their
behavior

ML may be used effectively to predict the

outcome associated with data patterns,
 to provide a fast approximation of a system

* toidentify behaviors from the observation of
data &

* ML methods outcomes provide valuable

insights but are not generally sufficient for
decision making &

How can we
make it happen?

What will
happen?

Why did it
happen?

What
happened?

Value

Gartner
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What ML can do for OR methods

« Fast approximation of input/output patterns provided by ML algorithms
may be used to replace computationally heavy tasks within OR
algorithms (e.g. constraint or objective function evaluation)

« Learning mechanisms can be incorporated to guide the algorithm or to
select the most effective components depending on
— preliminary fraining of the algorithm
— runtime observation of the algorithm’s behavior

« By combining ML&OR shortcomings of either method may be mitigated

« Research in this field is still at a very early stage but activity is large and
some promising results are coming
— see Benjo,Lodi,Prouvost https.//arxiv.org/pdf/1811.06128.pdf
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https://arxiv.org/pdf/1811.06128.pdf

Goal of this lecture

« |llustrate some (preliminary) attempts towards the infegration
of ML techniques for the benefit of heuristic methods

 We will focus on a well-known combinatorial opfimization
problem: the Capacitated Vehicle Routing Problem (CVRP)
— Attempt 1: Neighborhood ranking in VNS

— Intermezzo: Aggregate bounding
— Attempt 2: Characterization of solution quality
— Some preliminary conclusions
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Our Work Arena

The Capacitated Vehicle Routing Problem
(CVRP, the godfather of all CO problems)




.
Capacitated Vehicle Routing Problem

A CVRP Instance (CVRP)

* 1 depot, n customers with

O demand q;
O * (K) identical vehicles with
O O capacity Q
(0 y) O O * only capacity constraints and
Customer i i Vi O minimize routing cost
) O
requires q; goods O O o
O (X0, Y0)
e | Depot0
. o O
O O oo num. of vehicles
with capacity Q
Euclidean distance //Q O O O ©
(cost) \/// o
Undirected and complete / o
graph O O
O
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A CVRP Solution
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Main references

Classical Methods (1960-2000)

THE VEHICLE
RouTING PROBLEM

Chapter 5
Classical Heuristics for
the Capacitated VRP

Gilbert Laporte
Frédéric Semet

5.1 Introduction

« Recent Methods (>2000)

Chapter 4

Edited by Heuristics for the Vehicle
(VRP). These can be broadly classified into two main classes: classcal heuristics de- o) .
1J.":i‘:‘.’f;‘.“;’!I.Jif“l}?,'ii lif.‘i.‘(;ti’,‘f.!i’,‘:!.:'.‘,:’f ‘metaheuristics whose growth has occurred ’ % Paolo Toth + Routlng Problem

d
e

Chapter 6
Metaheuristics for the
Capacitated VRP

Michel Gendreau
Gilbert Laporte
Jean-Yves Potvin

6.1 Introduction

In recont.vears several metaheuristics have boen proposed for the VRP. These are
‘zeneral solution procedures that explore the solution space to identify good salutions
‘and often embed some of the standard route construction and fmprovement heuristics

iy better lacal optima than calier heuristics, but they also tend to be more time
consuming,

sheuistics have
) Detcrmiitc A (DA
5) Aut Systems (AS), o
s S tan Fom an il scntion .
each iteration ¢ from 10 & solution .. n the neighborhood N(z;) of
1, until  stopping condition s satisfed. 1f £(z) denotes the cost of x, then f(z1.1)

ess than f(z). As & result, eare st be taken to avoid cycling.
ach step a population of solutions. Each population is derived from
the preceding one by combining its best clements and discarding the worst. AS is

are, six main ypes of
ling (SA).

& constructive approach in which several new solutions are created at each iteration

using some of the information gathered at previous iterations. As was pointed ont by

Taillard ot al. 63, TS, GA and AS are methods that record, as the search proceeds,

information on solutions encountered and use it to obtain improved solutions, NN is a

learuing mechanisu that gradually adjusts  set of weights wntil an acceptable solution
werning ¢

is reached. The rules arch diffe in cach case and these must also be

tailored to the shape of the problem at hand. Also, a fir amount of crentivity and
experimentation is required. Our purpose is to survey some of the most representative

pplcations of oca search lgoithms o the VRP. For generc arices d textbooks

wes, and recombina-
hods is much higher
nereased computing
roquie fncly tuned
Aiffcult. In o sense,
s and the

b

i constraeted for

Damele Vlgo

Gilbert Laporte
Stefan Ropke
Thibaut Vidal

4.1 « Introduction

In recent years, several sophisticated mathematical programming decomposition algo-
rithmshavebeen put forward or th oltion of the VR. Yt dspit hisefos, oy

variance of is high. However, i in
ometimes g and must b sove quickly vithin predicable times, which means
i efcien heurtics are sequired inpracice. Also, bcasethe st proem defi
levelop
ity fexble 1 handle . vancl) of objectives and side constraints These concerns
learly reflected in the algorithms developed over the past few years. This chaps
provide n averviewof heurticsfo the VR, with an rphasis o recent o
The istory of VRP heuristis s od s heprblem sl I theie il paper
Dant

tices through the m]nnon of m.w programs and the lminstion of frctiona souions

and Gavish (3], Desrochers and Verhoog [20], and Wk and Hol [91). Since then, &
wide variety of constructive and improvement hearistics have been proposed, culminating
in recent years with the development of powerful metaheuristics capable of computing
within a few seconds solutions whose value lies within less than one percent of the best
known values.

“The field of VRP heuristics s now so rich that it makes no sense to provide an ex-
haustive compilation of them in a book chapter such as this. Instead, we have decided
0 focus on methods and principles that have withstood the test of time or present some

Fora ofthe sl huriic
and of the early metaheuristics, we refer the reader to the two chapters by Laport
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Background

some previous works on infegrating
ML within CVRP heuristics




Previous/ongoing work on using ML for VRP

« Arnold & Sorensen (C&OR 2018): What makes a VRP solution
good?¢ The generation of problem-specific knowledge for
heuristics

« seminal paper frying to determine features which
characterize good/bad solutions

« such features may be favoured/penalized in a heuristic solver

[PRIETY) ALMA MATER STUDIORUM
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Solution and instance features

« 18 features characterizing the instance and the solution were

identified

Instance features
1. Number of customers
Number of routes
Degree of capacity utilization
Average distance between each pair of customers
Standard deviation of the pairwise distance between customers
Average distance from customers to the depot
Standard deviation of the distance from customers to the depot
Standard deviation of the radians of customers towards the depot

©® N A WN
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Solution features

1
2
3
4
5.
6.
7
8
9
1

0.

Average number of intersections per customers

Longest distance between two connected customers, per route
Average distance between depot to directly-connected customers
Average distance between routes (their centers of gravity)
Average width per route

Average span in radian per route

Average compactness per route, measured by width

Average compactness per route, measured by radian

Average depth per route

Standard deviation of the number of customers per route

ALMA MATER STUDIORUM
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Training set generation

« A set of 5000 small (20-50 cust.) and 1000 larger (70-100 cust.)
random instances is generated with different capacity and
depot positions (8 classes)

« For each instance they generated

— a good solution by using the Arnold and Sorensen C&OR 2017
heuristic

— two less good solutions within 2% and 4% from the good one
— by using the A&S heuristics (H1) and a randomized Clarke &Wright (H2)

— In tfotal 4 datasets {2%,4%} X {H1,H2} with 10000 small and 2000 large
datapoints per class

— 192,000 solutions in total labeled near_optimal/non_optimal

t ALMA MATER STUDIORUM
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Classification

« they used different

Solution features

ClCISS|f|erS (DT/ RF: SVM) TO 1. Average number of intersections per customers

prediCT SOlUﬂOﬂ qUO“Ty 2. Longest distance between two connected customers,
. per route

usSing 5-fold Cross 3. Average distance between depot to directly-

Validation and obtained connected customers

4. Average distance between routes (their centers of

60_90% prediCﬂOn gravity) -
AdCccurg Cy Average width per route

Average span in radian per route
° USing Simple DeCiSiOn Tree Average compactness per route, measured by width
. . Average compactness per route, measured by radian
based on just one solution
feature they identified the

Average depth per route
most predictive features

B OJ0 N o w

0. Standard deviation of the number of customers per
route

‘852 ALMA MATER STUDIORUM
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Use of knowledge to guide heuristics

« The outcome of previous analyses identified solution width
(S5) as a feature with high predictive value

« They used a Guided LS effective heuristics in which edges
which increase solution width are penalized

« The overall GLS is very good on the famous X benchmark and
other benchmark

« Actuadlly the knowledge contribution is quite marginal (the
GLS is indeed already very good !)

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 15



More on A&S features

« Recently, Lucas, Billot, ;
Sevaux (C&OR 2019) - :
analyzed in depth the - .
features proposed by
A&S
* They used random
forasts 1o rank the . y .
expda le nTory im por’[g nce Experiments on the utility of I1.. I8.
Of -|-h e VOriOUS feg-l-ures Features Random forest  Support-Vector machine
[1...18, S1..S10 75.16% 77.28%
$1..510 76.10% 77.16%

[ZRIESS) ALMA MATER STUDIORUM
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More on A&S Features

* they also studied the
correlation between S
features

... and performed Principal
Component Analysis

« [1-I8 and S2 can be remove ...........
"a priori" slighlty improving thte
overall accuracy

Dim1 (39.1%) 2 ALMA MATER STUDIORUM
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Other works on using ML for VRP
« Schroder, Gauthier, Schneider, Imnich (Odysseus 2018)

— use of ML to define the sparsification factor in a granular search
— use of ML to accelerate sequential local search

« Arnold, Vidal, Santana, Sorensen (Verolog 2019):
— frequent pattern mining in a set of elite solutions

— during a "pattern injected local search” (PILS) patterns are used o
define moves in which:

» incompatible edges are removed, pattern edges are reconnected and
remaining routes are optimally reconnected

(SRR
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Attempt #1

Neighborhood ranking in VND

joint work with L. Accorsi, M. Lombardi, M. Milano




Local Search

 All existing heuristic approaches for the CVRP (as well as for
most Combinatorial Problems) rely on local search

« For CVRP several relatively simple neighborhoods are widely
used and examined hundreds of thousands of times.
— 2-0pt and 2-opt*
— relocate (one or more customers)
— exchange (one or more customers)

— cardinality is typically O(n?)

(i L’O
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Local Search

* tO achieve acceptable computing tfimes
— Granular neighborhoods (Toth&V., 2005),
— Sequential search (Irich et al. 2006)

— Static Move Descriptors (Zachariadis&Kiranoudis, ‘10, Beek et al. ‘18,
Accorsi and V., 2020)

« Simple (granular) neighborhoods are often combined and
searched together to achieve better performance

« A common approach to combine neighbborhoods is Variable
Neighborhood Descent (Mladenovich&Hansen ‘97)

LAl ALMA MATER STUDIORUM
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Variable Neighborhood Descent

« Variable Neighborhood Descent (VND):
— k neighborhoods Ny,...,Ny

determine initial candidate solution s

=1

Repeat:
choose a most improving neighbor sy of sin N,
If 9(so) < g(s) thens =sy;i:=1
Elsei:=i+1

Untili >k

N. are typically ordered according to increasing size/effectiveness or randomly (RVND)

ALMA MATER STUDIORUM
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Our goal
* in a VND setting,

— using ML techniques to identify the most promising neighborhood
(or that none of them will be able to improve a given solution)
— enables computational savings that could be used to perform a
more fruitful search.
« focus on the CVRP and frain an Artificial Neural Network for
ranking neighbornoods at search time.

« preliminary experimental results show that using an informed
neighborhood selection strategy for local search helps in
avoiding the exploration of unpromising neighborhoods.

< 2
CAAAEE) ALMA MATER STUDIORUM
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12 Neighborhoods considered

» relocate/exchange
1. one_zero
one_one,
two_zero,
two_one,
two_two,
three_zero,
three_one,
three_two,
. three_three,
« 3Jintra and inter-route 2-opt exchanges (split, tail, intra)
« 2 different shaking:
— random 1-0 exchanges
— removal of some routes and reinsertion of customers

00N GA WD
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The value of a neighborhood exploration:
A preliminary analysis

 We run a VND with 12 neighborhoods + shaking and stop
after a given # of non improving iterations

« We simulate the following strategies

— Randomized VND (baseline)
« random N. permutation

— Best VND (optimal classifier without errors)
« evaluate all N. and always select the most improving one
— Probabilistic BVND (sub-optimal classifier)

« evaluate all N. and roulette-wheel selection with probability proportional to the
improvement

[PRIETY) ALMA MATER STUDIORUM
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The value of a neighborhood exploration
A preliminary analysis

We computed the average value of a neighborhood
exploration

Strategy Total # applications Appl. Savings
improvement wrt RVND

RVND 7,5 * 1075 3,6%1077 0,02%
BVND 8,2 * 1015 2,1*10"6 0,22% 1600%
PBVND 8,1 * 1015 3,1*10"6 0,21% 1000%

Values are averaged across #runs=10 and all instances of X dataset

« Raftio express what is the average improvement of any neighborhood on any solution
« BVND and PVND can identify local optima and thus stop prematurely the VND

\ ALMA MATER STUDIORUM
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Definition of the training set

« We randomly selected 60 out of 100 instances from the X
dataset introduced by Uchoa et al (2014)

« Generate a set of solutions
— starting from Clarke&Wright ‘64 solution S

— use an ILS-like framework on the current S
« applying a single descent with each one of the 12 neighborhoods
» select the best improving operator and the corresponding solution S’

* iterate to alocal optimum and possibly update S
» shaking on the globally best solution S

« This way we collected a set of 22,113,348 solutions together
with the best improving operator

‘852 ALMA MATER STUDIORUM
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Definition of the training set

« for each solution we store the 18 f.p. features proposed by
Arnold&Sorensen + class (best improving operator)

 class = shaking if solution is a LO for all N.

Instance features

1.

©® N A WN

Number of customers

Number of routes

Degree of capacity utilization

Average distance between each pair of customers

Standard deviation of the pairwise distance between customers
Average distance from customers to the depot

Standard deviation of the distance from customers to the depot
Standard deviation of the radians of customers towards the depot

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics

Solution features

1
2
3
4
5.
6.
7
8
9
1

0.

Average number of intersections per customers

Longest distance between two connected customers, per route
Average distance between depot to directly-connected customers
Average distance between routes (their centers of gravity)
Average width per route

Average span in radian per route

Average compactness per route, measured by width

Average compactness per route, measured by radian

Average depth per route

Standard deviation of the number of customers per route

\ ALMA MATER STUDIORUM
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Classifier based on Ariificial Neural Network

« We trained a fully connected neural network with 4 total layers
— input layer with 18 input units
— hidden layer with 64 hidden units and relu activation function
— hidden layer with 32 hidden units and relu activation function
— output layer with 13 output units and soffmax activation function: 12 local search

operator and 1 shaking operator (= Local Optimum)

« Training using the categorical crossentropy loss function (stardard
choice for multiclass classification with neural networks) and lasted 10
epochs.

— Accuracy results were around 40% (most probably related to the features we use).
— More epochs did not allow to obtain better accuracy results.

Py
/:f*‘\%
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Use within optimization

« VND with 12 neighborhoods where order is

a) Static (statistics-based):
— N. are sorted according to their success in the training set

b) Random
c) ML-based:

— The trained neural network is used to predict, given a solution, the
probability of each neighborhood to be the most improving one on
that solution.

— Neighborhoods are sorted according to their probability in a
decreasing order and used in that order

b O/’; ALMA MATER STUDIORUM
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Experiments

« Goal: compare the effectiveness of the three different
approaches.

 To have a fair comparison, we evaluate the number of attempts to find
an improving solution/operator (and the quality of such improvement)
on the same set of starting solutions.

« solution generator (to create 1,000 solutions per test instance)

— inifialized with C&W solution,

— subsequent solutions are obtained with an ILS based on the same neighborhoods
executed in a RVND fashion and run for a number of iterations randomly chosen
between 1 and 10.

— The final solution that will be returned is shaken and has a probability of 0.5" to be a
local optimum for h operators.

— We used the same generator both in experiment 1 and 2.

< \r,jc
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Best operator ranking

impr. threshold =0 impr. threshold = 0.001

local optimum 12

10 local optimum

LMA MATER STUDIORUM
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Experiment #1

Given 40% solutions of the test set
 for each instance we generated 1000 solutions

« we compared the 3 VNDs and computed

— how many attempts were necessary to find an improving N.
— what was the improvement of the first improving N. in terms of % gap.

VND ordering

Static 1.98 2.88
Random 2.39 +21% 2.58
NN-based (Thr=0) 1.44 -27% 2.88
NN-based (Thr=0.001) 1.37 -31% 2.65

ALMA MATER STUDIORUM
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Experiment #2

Given 40% solutions of the test set

« we compared the 3 VNDs and computed

— how many neighborhoods were explored to reach a local optimum
(in a VND using the different neighborhoods)

— what was the improvement in terms of % gap.

VND ordering # N. explored

Static 27.79 3.70
Random 62.84 +126% 3.62
NN-based (Thr=0) 18.76 -32% 3.47
NN-based (Thr=0.001) 11.62 -59% 3.16

LMA MATER STUDIORUM
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Attempt 1. Conclusions

ML may enable consistent time savings in mulfi-neighbborhood
local search while preserving solution quality

* Very promising results obtained

... However:

« we performed a preliminary "In field" testing within a high-
quality ILS

« Current features extraction is O(n?) = the associated

overhead is not compensated by the potential saving of NN-
based VND

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 35




Attempt 1: future work

* incremental feature evaluation or use just a selection of
features (following Lucas et al. findings)

« pbetter features (linear-time extractable, see later) ¢

« compute NN-based only every H iterations and then keep it
fixed

 similar testing on the shaking step which is of crucial
importance for ILS

Aty O/’: ALMA MATER STUDIORUM
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Intermezzo:

Aggregate Bounding

Joint work with L. Accorsi




Can we estimate the value of the Optimal Solution?

« To prematurely stop the search in heuristic algorithms once
we are close enough

* In (heuristic) B&B algorithms to cut unpromising pathse

LMA MATER STUDIORUM

'S UNIVERSITA DI BOLOGNA

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics 38




The ML way

* Train a neural network to predict the value of the optimal solution
of a given instance

— A one-shot task
— Extremely difficult!

« What we try to do instead:

« Train a neural network to predict the gap of a solution from the
optimal solution

— We can easily retrieve the value of the optimal solution from the gap and
the solution cost

— For each instance we can have a lot of predictions
— Aggregate them and hope they are going towards the right direction!
— A wrong prediction will harm but less than in the first scenario

) ALMA MATER STUDIORUM
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Training

» Train a Convolutional Neural Network on a "top secret”
2D CVRP (linearly extractable) solution representations

! r  If's somehow a "picture”
03 . of a solution
o « NN are succesfully used
IN Image recognition
- . « are pictures of good
R and bad solutions
of o "different"?

0 0.2 0.4 0.6 0.8 1

RS
£ %‘T\\%

£ é /’:) ALMA MATER STUDIORUM
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0.8

0.6

0.4

0.2

Visualizing solutions with different qualities

- Images tend to became larger on worse solutions because
containing worse routes

- However, it is not always that clear for a human eyel

1 g0 1 o 1

0.8 N, 0.8 . 0.8

0.6 . ° 0.6 . 0.6

0.4 0.4 . 0.4

0 0.2 0.2

0 0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Gap =0.01% Gap=3% Gap = 6% Gap=8%
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Aggregate bounding
on a single instance

« Train a NN o estimate, given a solution
s, Its gap wrt the optimal/BK solution

 How to use that on an unknown CVRP
instance:
1. Sample some solutions during the search

2. Foreach sampled solution s compute an
estimated value opi(s)

3. Aggregate the estimations to
approximate the optimal solution value
for the instance during the search

Integrating Machine Learning into state-of-the-art Vehicle Routing Heuristics
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Running mean

0 2000 4000 6000 8000 10000
n. unique solutions

Running stddev
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2000 4000 6000 8000 10000
n. unique solutions

Signed errors distribution




Sumimary Mean biased error

Preliminary testing on a test set
» Sample local optima during g
algorithm evolution .
— Features computation and prediction
has a cost o oz wa de o5 1o
— Try to minimize their impact S et
- Incrementally compute the mean -
optimal value "
— Mean error of about 0.20! Zasol
— High std dev o

sampling probability

2\ ALMA MATER STUDIORUM
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Conclusions on aggregate bounding

« preliminary experiments on the new features are promising
 further testing on their use for other purposes
« gap estimation may be useful for early stop of a heuristic

) ALMA MATER STUDIORUM
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Attempt #2:

Data-based Guided Optimization
for the CVRP

joint work with L. Accorsi




Godl

« Can we study characteristics of high-quality solutions to
design better algorithms?

« The Machine Learning/Data Mining Approach:

— Let a model identify recurring patterns found in high-quality solutions

[PRIETY) ALMA MATER STUDIORUM
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Not as easy as a Standard ML Task

« We are not inferested in maximizing a ML metric (e.g.,
accuracy) but in guiding an algorithm possibly composed of
several complex intferconnected components

« Any change in an existing algorithm does not necessarily
produces beftter final outcome
— Particularly in algorithms already producing high-quality results

« Analysis of what a change implies on the overall algorithm
may not be frivial

TR0
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Challenges

1. The power of randomization (probability)
— Relying on randomness typically generalizes much better to different
populations than any deterministic choice
2. High baseline
— Improving results generated by state-of-the-art algorithms is difficult
— Years of high-quality human knowledge vs biased dataset of raw data

3. Prediction overhead

— Additional computation is required for features extraction and
inference

— Guided decisions must substantially improve quality (difficult because
of 2) or cut computing tfime to be useful in practice
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Arnold & Sorensen Solution’s Characterization

« Featurize a solution by using aggregate values
— Average routes width
— Average routes depth

« Forrandomly generated instances with 20-100 customers classify
solutions as near-optimal or sub-optimal (2%-4%)

* Inferesting accuracy results of up to 20% obtained with a decision
tree on a cluster of similar instances with 70-100 customers to
classify near-optimal solutions from sub-optimal (4%)

« Accuracy decreases when classifying near-optimal solutions from
slightly better sub-optimal solutions (2%)

— They probably share a lot of characteristics!
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Solutions are Complex Objects

« Can you discriminate a near-optimal solution from a sub-
optimal one by using aggregate characterizationse
— Everything gets extremely diluted

— Think of an optimal solution having 100 routes for a CVRP instance in
which 1 or 2 route(s) are changed

* Quality can degrade at will
» Aggregate features would not significantly change
« Overcoming the near-optimal and sub-optimal solution
classification

— If not trivially bad, a sub-optimal solution will just be such because
defined by the wrong set of routes
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Solutions as Set of Routes

« Work instead with routes situated in their context

» Solution features as the set of features of individual routes
normalized according to the solution itself
— Load ratio
— Route cost contribution to the solution
— Mean distance between inferconnected customers
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Full Solution Dataset

* From the X instances we computed 500 millions distinct
solutions describing a broad range of qualities composed of
450 millions distinct routes
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About 50% distinct solutions have gap <= 1%
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Sampled Solution Dataset

« 10 million high-quality (<=1%) distinct solutions
« 10 million low-quality (>1%) distinct solutions
« Total number of about 600 million not necessarily distinct

routes classified as

— Shared: when occurring in solutions both in high-quality and low-
quality solutions

— High-quality: when occurring in high-quality solutions only
— Low-quality: when occurring in low-quality solutions only
« Note that labels strictly depend on the sampled dataset

Ser D
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Shared, High-quality and Low-quality routes

« About 80% of the routes are shared

« Just 10% of them are peculiar of high-quality and low-gquality
solutions

* |s an aggregate solution characterization really meaningful?
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Sampled Dataset Analysis

« About 94% low-quality solutions contain at least one low-
quality route

« About 6% low-quality solutions contain only shared routes
— Those are solutions very close to the hard threshold of 1% gap
— Average gap 1.24 +0.24

« About 49% high-quality solutions are enfirely made of shared
routes

— Possibly be related to the routes’ distribution

— There are less ways of composing high-quality solutions and a lot
more to define low-quality ones
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Sampled Dataset Analysis

« About 94% low-quality solutions contain at least one low-
quality route

» |dea: get rid of low-quality routes!

« Applications:
— Guide a heuristic optimization processes
— Skip low-quality routes in SP-based matheuristics
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Sampled Route Dataset
(out of the 600 million non distinct routes)

* | million low-quality routes

500 thousand high-quality routes

250 thousand shared routes from low-quality solutions
250 thousand shared routes from high-quality solutions

A binary classification
— Interesting routes
— Not inferesting routes
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Use-oriented ML model selection

 Model purpose is to be embedded into state-of-the-art
algorithm

— Fast features extraction from solution
« Simple handcrafted features linearly extractable

— Fast prediction
« Let's use the simplest model having good accuracy results

— Decision free with at most 5 levels

— Has accuracy slightly worse than more complex models but it has a
very fast prediction fime

— 10-fold cross validation: mean accuracy 77%
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Testing the idea

« To have a convincing validation of the idea we must plug it
INntfo a state-of-the-art method ...
... Improving an average algorithm is not so difficult

« ... andsee if it allows for:
— final solution quality improvement, or
— faster convergence to good solutions, or
— ... at least, some speedup while preserving quality |

« We used as benchmark FILO, by Accorsi and Vigo 2020
(submitted =)
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FILO

A Fast and Scalable Heuristic for the Solution of
Large-Scale Capacitated Vehicle Routing Problems

Luca Accorsit and Daniele Vigo?

1 DEI «Guglielmo Marconi», University of Bologna
2 CIRI ICT, University of Bologna



Motivation

« State-of-the-art (heuristic) CVRP algorithms often exhibit a
quadratic growth

@ ILS-SP- Subramanian, Uchoa, and Ochi (2013) ® HGSADC - Vidal et al. (2012) SISR - Christiaens and Vanden Berghe (2020)
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Godl

« Designing a fast, naturally scalable and effective heuristic

ILS-SP - Subramanian, Uchoa, and Ochi (2013) = HGSADC - Vidal et al. (2012) SISR - Christiaens and Van den Berghe (2020)
KGLS - Amold and Sérensen (2019) ® FILO- Accorsi and Vigo (2020) FILO(long) - Accorsiand Vigo (2020)
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Fast ILS Localized Optimization (FILO) recipe

 |LS-based framework

» Local Search Acceleration Technigues
* Pruning Techniques

« Careful Design

« Careful Implementation

« Careful Parameters Tuning
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Improvement procedures

Abstract ILS procedure

\
1 Perform a shaking (in a ruin-and-recreate fashion)} 1
|

—

Re-optimize the shaken area ]

N

3 If not stopping condition, go toﬂ

o —

\—

(Optional)
Route Minimization

_/

Core Optimization
(where most of the time is spent)

N
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By using a sophisticated
Local Search Engine
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Local search engine

« Several operators explored in a VND fashion
— Hierarchical Randomized Variable Neighborhood Descent

« Acceleration fechniques for neighbborhood exploration
— Static Move Descriptors

* Pruning techniques
— Granular Neighborhoods and Selective Vertex Caching
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Computational resulis

« Two versions of FILO
 FILO 100K core optimization iterations
 FILO (long) 1M core optimization iterations

« On standard instances
« X dataset by Uchoa et al. (2017)

« On very large-scale instances
- B dataset by Arnold, Gendreau, and Sorensen (2019)
« K dataset by Kytojoky et al. (2007)
- 1 dataset by Zachariadis and Kiranoudis (2010)
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Very large instances

B (3K — 30K) K (=8K — 12K) Z (3K)
Arnold, Gendreau, and Sérensen (2019) Kytojoky et al. (2007) Zachariadis and Kiranoudis (2010)
2.5 3 1.5
KGLS ® GVNS [ ]
) bt 2 ! PSMDA
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* KGLS, KGLS (long) - Arnold, Gendreau, and Sorensen (2019)
* GVNS - Kytojoky et al. (2007)
* PSMDA - Zachariadis and Kiranoudis (2010)
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Plugging the idea into FILO

« Shaking performed in ruin-and-recreate fashion
— Select a "seed customer”
— remove a set of customers belonging to routes "close” to the seed

« Standard: shaking seed is a randomly selected customer

- Guided: bias the seed selection towards customers belonging
to low-quality routes
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Preliminary Experiments
(on the X instances from which we exiracted the training routes)

% gap

ey —_— x-ml

401 — Standard: 0.36%

— Guided: 0.34%

- Both in 2.12 minutes!

_ During the algorithm we do

| not recompute features if

= not needed

i At least it does not harm!

(') 20(')00 40(300 60600 80(l)00 100l000

Iterations
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Preliminary Experiments
(on the 100 largest instances from the Extended Benchmark of Uchoa et al. 2017)

% gap wrt min found in our runs )
BKS values not available

— sens-ml
——  Sens

Using Standard as baseline
Standard: solved in 2.08

31 minutes
Guided: -0.007% in 2.11 minutes

2 -
/ Not statistically significant
/ results but:
14 e Better final solutions value in

57 instances out of 100
* Average faster convergence to

0 20000 40000 60000 80000 100000 better solutions
Iterations
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Attempt 2: conclusions

« Route feature analysis has a better explanatory power than
aggregate solution features in distinguishing good and bad
solutions

 |dentifying non-interesting routes may be profitably used in
high-quality heuristics
« ...and it works ! (or at least it does not harm 1)
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Attempt 2: future work

« complete and submit the paper as soon as possible |
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Overall conclusions

* ML has great potential in the improvement of optimization
algorithms

« Feaftfure selection is of paramount importance to obtain
meaningful results and keep at bay the computational
overhead

 |tis important that the computational validation is performed
with high quality heuristics

e ...Thereis alot of work to do !
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