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General outline

This session:

 ~60 min Principles of Data Science
* ~30 min Learning from user in CP

* ~30 min Practical (python notebook)

Afternoon session:

e ~20 min Learning from vision in CP

* ~40 min Learning from environment in CP
« ~30 min Practical (other python notebook)



Prediction +

* Part explicit knowledge:
In a formal language

* Part implicit knowledge:
learned from data

constraint solving

KNOWLEDGE AS AN ICEBERE]
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- tacit knowledge (user preferences, social conventions)

perception (vision, natural language, audio)

complex environment (demand, prices, defects)



Perception data and constraint solving
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Our view part explicit, part implicit:

* know constraints, get predictions
* maximum likelihood problem?
* test limits of reasoning on learning



Perception data and constraint solving
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* Paper-based configuration problems (tax forms)

* Object-detection based reasonin




Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naive)

T8N ; . ?. = R R
——As" | " s 1317340673
6 [, [ D |CR > i
fon mam FRESEIRE
1 7T 5 1 326|534
5 3 & i El4 1L b &
L] || [
Pre-trained neural network Solving
accuracy failure rate time
img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01



Perception-based constraint solving

* Inspired by visual sudoku in SATNet paper [wang, Donti, Wilder, Kolter, ICML19]
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* Q: Do we need integrated end-to-end learning?

— Keep explicit explicit (constraints) and learn implicit (img class)




put more into the constraint solving

-] § : T \\
| E-:;'\-\.__ g --__X" : -
¥ o T — ! e

i ! i

vai| & TEu 5 gt
i i P
E LR s ' i
1 o i Pk
= _ L | ]

2x Fully
P enneshod
: lagar

| Pre-trained neural network

remove arg max of each individual prediction: ¥ = fo(Xyj) = :é*f“”‘:f; Polyi; = k| Xij),
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and make part of the CP model!

s.t. sudoku(s)

= find the maximum likelihood solution!
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put more into the constraint solving
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What does that mean, maximum likelihood solution of a Sudoku?

The unconstrained max likelihood solution = argmax prediction of each image
— sudoku constraint forbids certain solutions: find next most likely one...

In ML speak: the solver does 'joint inference' over all predictions, takes structure into account
ex. used in Natural Language Processing [Punyakanok, COLING04]



Back to the deep learning part

Why are individual predictions insufficient?

— each image is learned independently, there is no penalty for '9's having
very high likelihood of being an '8

— known as 'calibration’ in the ML community (overconfidence in some

classes)
-y o
— can actually distort the joint s EF i
inference, but we can first b”-*‘- Go oo O
calibrate the predictions! g £
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Confidence Confidence

uncalibrated Temperature scaling Vector scaling Matrix scaling

MLL 12.07% L1.61% [ 454 10.12%

Mustration from
test ace. 6. TH% 6. ThH% 6. TN O6G.93%

Table 4: NLL loss (%) on validation set and accuracy on test set for Platt

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20

sealing variants



Bacl to the constraint solving

Are we using all available information?

A sudoku puzzle has to have one unique solution

— not in current constraint model: a 2nd order constraint
argmin f(X)
sulg:}e-:t to C(X)
. Ax - X £ X Clx
But we can check it! gl
if the joint max likelihood image predictions has multiple solutions:

forbid and find next most likely one!
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Pre-trained neural network



Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities
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ours1

accuracy failure rate time
img cell grid grid average (s)
baseline 94.75% 15.51% 14.67% 84.43% 0.01
hybridl 99.69% 99.38% 92.33% 0% 0.79
hybrid2 99.72% 99.44% 92.93% 0% .83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]



Perception-based constraint solving

Practical later today:
you will implement and test hybrid approaches!

Enhancing the scope:
—  Segmentation + classification + reasoning
—  Object detection + segmentation + classification + reasoning

<DEMO>


http://178.62.207.46/home

Prediction + constraint solving

. KNOWLEDGE AS AN ICEBERE]
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* Part implicit knowledge:
learned from data

tacit knowledge (user preferences, social conventions)

perception (vision, natural language, audio)



Complex environment (demand, prices)

Prediction + Optimisation aka decision-focussed learning:

Historic Energy Prices  Predicted
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Machine Scheduling to
minimize Energy Consumption
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.
Historic Features

* Optimize task scheduling's energy cost, by predicting energy prices
* Optimize steel plant manufacturing, by predicting steel defects

* Optimize money transport, by predicting amount of coins at clients



Prediction + Optimisation, naive

Implementation
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Can we do the (deep) learning better?

MSE loss function is not informative enough

— Regret -

MSE

MSE

Regret

Epoch

MSE loss not the best proxy for task loss....



Why?

MSE loss not the best proxy for task loss

Historic Energy Pr‘ices Predicted
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Vector of predictions

Joint inference: trades off the individual predictions

MSE = average of individual errors of the vector
Joint inference = joint error

— some errors worse than others!

Fecgred



Complex environment (demand, prices)

Which errors worse? is combinatorial, need to solve to know

Goal: end-to-end learning with regret as loss

regret({(x,y)}, fL V. D.C,0) = Challenges:
I}
B L el - each regret comp. is NP-hard
5.t V11 solution of COP(V, 'ﬂ.{.‘,u’rf] - over an exponentlal nr. Of Outcomes

V¥ solution of COP(V,D.C, o%)
- discrete & non-differentiable

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:
Black box (subgradient methods):
— - SPO+[1]: solve with f(ZC* - C) (convex comb of real and predicted values)
- bb[2]: solve with f(c + eps) perturbed predictions

White box:
- QPTLI3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] EImachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017

[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020

[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017

[4] Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AA/
51 Mandi Guns “Interior Point Solvina for | P-based nrediction+ontimisation ” NeurlPS 2020



SPO+: a deeper look at the (deep) learning

Standard:

with SPO+:

Algorithm 1: Stochastic gradient deseem

Algorithm 2: Stochastic gradient descent with SPO- subgradiens

Input : training data T = { X, g}, learning rate 4

1 initialise @ {mewral network welights)

z for epochs do

a for brtehes dao

4 sample bateh (X, y) ~ D

5 i+ glz.®#) (forward pass: compute predictions)

[ Coampante loss L, o) and gradiend I.!.-rn

T Updote 8 = § = fl:ll_ through backpropagation  {backward pass)
A el

o e

Input : training data T = {X_ g}, architecture g, learning rate -

1 initialize & (nenral network weights of )

2 for epechs do

. for batehes do

4 sample batch (X, ) =~ T

: o= gl X0 (Forwarnd pass compite prodictions)

I T (T T =0 trick, comvex comb, of g ancd g

Solve sol = selver|i) call= external solver

A IFse suberadient L sl ver| ) — sod

0 Update 8 = & = - '::' through boackpropagation  (boekward poss)
10 ol
11 e

we need to solve a CP on line 7 for every training example
(typically: 10-50 epochs, of 500 to 5000 samples...)



Can we do the solving better?
: Challenge

Prce To compute subgradient «* (200 = &) must be
. solved repeatedly for each training instance
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Can we do the solving better?
Challenge

To compute subgradient v*(20 — #) must be

solved repeatedly for each training instance

Foatrid High training time &
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| : Observe: constraints always the same,
& ,,,,,,,, , only cost vector y* changes,
en ! .

 cutgras and we solve it for thousands of y* values,

--------

Training by SPO each instance having a different true optimal solution




Can we do the solving better?

Challenge

P_° ! MIP To compute subgradient «* (200 = &) must be

I ] Sofner L} 3 i c
| ﬂ*-.. — sl wied !-e'|_|1'.!|11'-:||_‘.' for each training instance

Foatuns I Pradictiva f High training time &
Moo Z computation-expensive

| T Observe: constraints always the same,
ﬂ J only cost vector ¢ changes,
i s graen and we solve it for thousands of ¢ values,
Training by SPO each instance having a different true optimal solution

Solving MIP = repeatedly solving LP
— Do we need to solve the MIP to optimality? or to a small gap?
— Can we replace the MIP by the LP relaxation?

Solving LP = repeatedly finding improved basis
— Can we warm-start from previous basis's?

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Relaxed Oracle

Call a weak but fast and accurate oracle
For MIP, the relared oracle is a weak oracle

o

model - moded TR model

MSE-r i = MSE-T __""'::' v MSE-f
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Relaxed Oracle helps in reducing train-

ing time without compromising quality

LP relaxations and warmstarts:

* Faster training time = possible to do wider grid search
* Faster training time = possible to scale up to larger problems

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Relaxed Oracle

Call ¢ ak | fast and accurate oracle "
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..~ * Really hard instances:
(1+ hour for single MIP solution)

R 1% ] I
Epoch Tiresed s condi)

(a) Epoch (b) Time

Relaxed Oracle helps in reducing train-

ing time without compromising quality

* SPO-relax with total time budget:

Two-stage Approach SPO-relax

Hard Instances
(200 tasks 2 epochs 4 epochs 6 epochs B epochs 2 hour 4 hour 6 hour

on 10 machines)
instance | 90,769 88,952 BG,059 86,464 72,662 74,572 79,990
instance 11 128 067 124,450 124,280 123,738 120 800 110,944 114,800
instance I11 129,761 125,400 122,956 119,000 108, T48 102,203 112,970
instance [V 135,398 132,366 132,167 126,755 109, 6594 099,657 97,351
instance V 122 310 120,949 122,116 123,443 118,946 116,960 118,460

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]



Prediction + Optimisation for MIP

SPQO's subgradient is an indirect 'black box' method
— If we know it is a MIP... can we get better gradients?

Can we compute the gradient of a MIP?
* Discrete so non-differentiable

Can we compute the gradient of an LP?

* Linear objective, so not twice differentiable
— Previous work: add quadratic term, differentiate QP
— Our work: add log barrier, differentiate integer point formulation!

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



Training

Data

_ Forward Pass p o\ving with barrier: Int. Point method

LP Forward Pass
: N 1. Solve the Homogeneous
- =) Self-dual embedding
: A 2. Perform a Newton step
& é Discrete ILP  Relaxed LP | 3. Decrease A

Compute Task Loss:
cT[x*(€) - x*(c)]

LP Backward Pass
1. Differentiate the Homogeneous

Self-dual embedding computed
in the Forward pass

2. Compute and backpropagate
dx*(&)/dé

Update Neural Net
parameters to

T minimizeTasklees.

Backward Pass

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



Interior Point Solving for LP-based prediction + optimisation

KKT vs HSD

KKET, log barrier H5D, log barrier
A deoueoff 1070 1077 1007 107! 107F 1070

Fegret 14365 14958 21258 10774 14620 21594

Table 1. Differentiating the HSD formulation is more efficient than differ-
entiating the KKT condition

Compariosn with the state of the art

Two-stage QPTL SPO HSD, log barrier

O-layer 1-layer O-layer 1-layer O-layer 1-layer O-layer  1-layer
MSE-loss 75 796 3516 2x ll}! 3327 3955 2075 16 = ll_l'_

(7)  (5) (56) (4x107) (485) (300) (620) (1 x 107)

13322 13500 13652 13590 11073 12342 10774 11406
Regret

(1458) (2021) (325) (288) (895) (1335) (1715) (1238)

Table 2- Our approach is able to outperform the state of the art

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurlPS20]



Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-
discrete and hence (almost) differentiable

' ' "l
Observation: constraints always stay the same, ¢ ,J
so the polytope is always the same. 4

— Can we also use an inner approximation? TR

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]



Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-
discrete and hence (almost) differentiable

Observation: constraints always stay the same, 'J
so the polytope is always the same. .\}*”' .

— Can we also use an inner approximation?

Inner approximation = pool of known solutions
— can replace 'solver()' by 'argmax()' over finite solutions! (SPO+)
— can use probabilistic loss function (Noise-Contrastive Estimation)

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]



Prediction + Optimisation for MIP and more

Inner approximation = pool of known solutions
— can replace 'solver()' by 'argmax()' over finite solutions! (SPO+)
— can use probabilistic loss function (Noise-Contrastive Estimation)

Main advantage: do not have to call a solver for each training
instance! Can 'grow’' solution pool FAST and GOOD

% 1% R 5% | BRI

By L: L L= L Pl L
Loss-Varianis LossVanants

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]



It's so fast we can actually train a convolutional neural
network THROUGH a CP problem...

grid-acc  givens-acc  cell-acc

Two-stage 87.50% 98.00% O8.09%

Vlsual SUdOku ) Bl: ukhn.n Pool (10%5%:)  54.00% 89.62% 88.13%

FETTEIETE 0% :l[}rj 74.50% O4.37% 94.51%

oz aloog|zso ﬂPU Fmﬂ[]ﬂ«] 66.75% 92.67% 02.88%
[Eoolobulona|
codlBralTed

K i Jﬂﬁ e Table 5: Classification task accuracy

Tesandlole
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cholopolsa

For this task, training individual digits still better.




Key take-aways:

KNOWLEDGE AS AN ICEBERG!

Explicit knowledge: use solver EXPLiciT /\
Implicit knowledge: do learning s {ﬂ
Ah,,mf/

Joint inference / collective classification:
maximize log likelihood!

Keep revisiting the solving AND the learning,
hybridize and use properties of one in the other!

Comb. optimisation inside neural loss becoming actually feasible
— end-to-end hybrid prediction and optimisation



Future Work

Complexity of learned models vs. complexity of CP solving
Faster (runtime), more accurate learning
Interactive preference learning, multi-agent

Other perception data (language, voice, camera)

Wide range of applications (Industry 4.0, transport & more)



