



## Learning from environment in constraint solving

## Tias Guns <tias.guns@kuleuven.be>

#### Joint work with:

- Jayanta Mandi
- Maxime Mulamba
- Victor Bucarey Lopez
- Rocs Canoy
- Ahmed K.A. Abdullah



And: (the last part)

- Peter Stuckey
- Emir Demirovic



- Michelangelo Diligenti
- Michele Lombardi

# **General outline**

This session:

- ~60 min Principles of Data Science
- ~30 min Learning from user in CP
- ~30 min Practical (python notebook)

## Afternoon session:

- ~20 min Learning from vision in CP
- ~40 min Learning from environment in CP
- ~30 min Practical (other python notebook)



# Prediction + constraint solving

 Part <u>explicit</u> knowledge: in a formal language

 Part <u>implicit</u> knowledge: learned from data



- tacit knowledge (user preferences, social conventions)
- perception (vision, natural language, audio)
- complex environment (demand, prices, defects)

# Perception data and constraint solving



## <u>ML view:</u>

Wang, Donti, Wilder, Kolter; ICML19

- can we learn the (pairwise) sudoku constraints?
- test limits of learning for reasoning

Our view part explicit, part implicit:

- know constraints, get predictions
- maximum likelihood problem?
- test limits of reasoning on learning

[Mulamba, Mandi, Canoy, Guns, CPAIOR20]

# Perception data and constraint solving

Other application settings:

• Document analysis

. . .



- Paper-based configuration problems (tax forms)
- Object-detection based reasonin



# Perception-based constraint solving

## Pedagogical instantiation: visual sudoku (naïve)



# Perception-based constraint solving

• Inspired by visual sudoku in SATNet paper [Wang, Donti, Wilder, Kolter, ICML19]



- Q: Do we need integrated end-to-end learning?
  - $\rightarrow$  <u>Keep explicit explicit</u> (constraints) and <u>learn implicit</u> (img class)

# put more into the constraint solving

remove arg max of each individual prediction:

$$\hat{y}_{ij} = f_{\theta}(X_{ij}) = \underset{k \in \{0,..,9\}}{\operatorname{arg\,max}} P_{\theta}(y_{ij} = k | X_{ij}),$$

and make part of the CP model!

$$\min \sum_{\substack{(i,j) \in \\ given \{1,...,9\}}} \sum_{\substack{k \in \\ 1,...,9\}}} \frac{-log(P_{\theta}(y_{ij} = k | X_{ij})) * \mathbb{1}[s_{ij} = k]}{constant}$$
  
s.t. sudoku(s)

= find the maximum likelihood solution!



What does that mean, maximum likelihood solution of a Sudoku?

The *unconstrained* max likelihood solution = argmax prediction of each image  $\rightarrow$  sudoku constraint **forbids** certain solutions: find next most likely one...

In ML speak: the solver does 'joint inference' over *all* predictions, takes structure into account ex. used in Natural Language Processing [Punyakanok, COLING04]

# Back to the deep learning part

Why are individual predictions insufficient?

- $\rightarrow$  each image is learned independently, there is no penalty for '9's having very high likelihood of being an '8'
- → known as 'calibration' in the ML community (overconfidence in some classes)
- → can actually distort the joint inference, but we can first calibrate the predictions!



|          | uncalibrated | Temperature scaling | Vector scaling | Matrix scaling |
|----------|--------------|---------------------|----------------|----------------|
| NLL      | 12.07%       | 11.61%              | 11.38%         | 10.12%         |
| est acc. | 96.75%       | 96.75%              | 96.70%         | 96.93%         |

Illustration from Guo, Pleiss, Sun, Weinberger, ICML, 2017

Table 4: NLL loss (%) on validation set and accuracy on test set for Platt scaling variants

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

# Bacl to the constraint solving

Are we using all available information?

A sudoku puzzle has to have one unique solution

 $\rightarrow$  not in current constraint model: a 2<sup>nd</sup> order constraint

argmin f(X)subject to C(X) $\exists X' : X \neq X', C(X')$ 

But we can check it!

if the joint max likelihood image predictions has multiple solutions: **forbid** and find next most likely one!



# Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities



|          | accuracy |        |        | failure rate | time        |  |
|----------|----------|--------|--------|--------------|-------------|--|
|          | img      | cell   | grid   | grid         | average (s) |  |
| baseline | 94.75%   | 15.51% | 14.67% | 84.43%       | 0.01        |  |
| hybrid1  | 99.69%   | 99.38% | 92.33% | 0%           | 0.79        |  |
| hybrid2  | 99.72%   | 99.44% | 92.93% | 0%           | 0.83        |  |

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

# Perception-based constraint solving

Practical later today: you will implement and test hybrid approaches!

Enhancing the scope:

- Segmentation + classification + reasoning
- Object detection + segmentation + classification + reasoning

## <DEMO>

http://178.62.207.46/home



# Prediction + constraint solving

 Part <u>explicit</u> knowledge: in a formal language

 Part <u>implicit</u> knowledge: learned from data



- tacit knowledge (user preferences, social conventions)
- perception (vision, natural language, audio)
- complex environment (demand, prices, defects)

# Complex environment (demand, prices)

### Prediction + Optimisation aka decision-focussed learning:



- Optimize task scheduling's energy cost, by predicting energy prices
- Optimize steel plant manufacturing, by predicting steel defects
- Optimize money transport, by predicting amount of coins at clients

# Prediction + Optimisation, naive



Pre-trained neural network

# Can we do the (deep) learning better?

MSE loss function is not informative enough



MSE loss not the best proxy for *task* loss....

# MSE loss not the best proxy for task loss....





*Vector* of predictions Joint inference: trades off the individual predictions

## Why?

- MSE = average of individual errors of the vector
- Joint inference = *joint* error

 $\rightarrow$  some errors worse than others!

# Complex environment (demand, prices)

## Which errors worse? is combinatorial, need to solve to know

## Goal: end-to-end learning with regret as loss

$$\begin{split} regret(\{(\mathbf{x}, y)\}, f, \mathcal{V}, \mathcal{D}, \mathcal{C}, o) &= \\ \sum_{j=1}^{B} o^{y_j}(V^{f_j}) - o^{y_j}(V^{y_j}) \\ s.t. \ V^{f_j} \text{ solution of } COP(\mathcal{V}, \mathcal{D}, \mathcal{C}, o^{f_j}) \\ V^{y_j} \text{ solution of } COP(\mathcal{V}, \mathcal{D}, \mathcal{C}, o^{y_j}) \end{split}$$

Challenges:

- each regret comp. is NP-hard
- over an exponential nr. of outcomes
- discrete & non-differentiable

# Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:

Black box (subgradient methods):

- - bb[2]: solve with f(c + eps) perturbed predictions

White box:

- QPTL[3]: solve Quadratic Program, differentiate KKT conditions
- Melding[4]: solve tightened LP relaxation as QP
- IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] Elmachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017
 [2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020
 [3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017
 [4] Wilder B, Dilkina B, Tambe M. "Melding the data-decisions pipeline: Decision-focused learning for comb. optimization." AAA
 [5] Mandi, Guns, "Interior Point Solving for LP-based prediction+optimisation." NeurIPS, 2020

# SPO+: a deeper look at the (deep) learning

with SPO+:

#### Standard:

| Algorithm 1: Stochastic gradient descent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Algorithm 2: Stochastic gradient descent with SPO+ subgradient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Input : training data $\mathcal{D} = \{X, y\}_{i=1}^{n}$ , learning rate $\gamma$<br>1 initialize $\theta$ (neural network weights)<br>2 for epochs do<br>3 for batches do<br>4 sample batch $(X, y) \sim \mathcal{D}$<br>5 $\hat{y} \leftarrow g(z, \theta)$ (forward pass: compute predictions)<br>6 Compute loss $L(y, \hat{y})$ and gradient $\frac{\partial L}{\partial \theta}$<br>7 Update $\theta = \theta - \gamma \frac{\partial L}{\partial \theta}$ through backpropagation (backward pass)<br>8 end<br>9 end | Input : training data $\mathcal{D} = \{X, y\}_{i=1}^{n}$ , architecture $g$ , learning rate $\gamma$ 1 initialize $\theta$ (neural network weights of $g$ )         2 for epochs do         3       for batches do         4       sample batch $(X, y) \sim \mathcal{D}$ 5 $\hat{y} \leftarrow g(X, \theta)$ (forward pass: compute predictions)         6 $\bar{y} = y + 2(\hat{y} - y) // SPO+ trick, convex comb. of y and \hat{y}         7       Solve sol = solver(\bar{y}) // calls external solver         8       Update \theta = \theta - \gamma \frac{\partial L}{\partial \theta} through backpropagation (backward pass)         10       end   $ |  |  |  |

we need to solve a CP on line 7 for every training example (typically: 10-50 epochs, of 500 to 5000 samples...)

# Can we do the solving better?



#### Challenge

To compute subgradient  $v^*(2\hat{\theta} - \theta)$  must be solved repeatedly for each training instance

High training time & computation-expensive

# Can we do the solving better?



#### Challenge

To compute subgradient  $v^*(2\hat{\theta} - \theta)$  must be solved repeatedly for each training instance

High training time & computation-expensive

<u>Observe</u>: constraints always the same, only cost vector *y*<sup>^</sup> changes, and we solve it for *thousands* of *y*<sup>^</sup> values, each instance having a different true optimal solution

# Can we do the solving better?



#### Challenge

To compute subgradient  $v^*(2\hat{\theta} - \theta)$  must be solved repeatedly for each training instance

High training time & computation-expensive

<u>Observe</u>: constraints always the same, only cost vector *c* changes, and we solve it for *thousands* of *c* values, each instance having a different true optimal solution

- Solving MIP = repeatedly solving LP
  - Do we need to solve the MIP to optimality? or to a small gap?
  - Can we replace the MIP by the LP relaxation?
- Solving LP = repeatedly finding improved basis
  - Can we warm-start from previous basis's?

#### **Relaxed Oracle**

Call a **weak** but fast and accurate oracle For MIP, the *relaxed oracle* is a weak oracle



LP relaxations and warmstarts:

- Faster training time = possible to do wider grid search
- Faster training time = possible to scale up to larger problems

#### **Relaxed Oracle**

Call a *weak* but fast and accurate oracle For MIP, the *relaxed oracle* is a weak oracle



#### ng time without compromising quality

# SPO-relax is scalable

- Really hard instances: (1+ hour for single MIP solution)
- SPO-relax with total time budget:

|                                                 | Two-stage Approach |          |          |          | SPO-relax |         |         |
|-------------------------------------------------|--------------------|----------|----------|----------|-----------|---------|---------|
| Hard Instances<br>(200 tasks<br>on 10 machines) | 2 epochs           | 4 epochs | 6 epochs | 8 epochs | 2 hour    | 4 hour  | 6 hour  |
| instance I                                      | 90,769             | 88,952   | 86,059   | 86,464   | 72,662    | 74,572  | 79,990  |
| instance II                                     | 128,067            | 124,450  | 124,280  | 123,738  | 120,800   | 110,944 | 114,800 |
| instance III                                    | 129,761            | 128,400  | 122,956  | 119,000  | 108,748   | 102,203 | 112,970 |
| instance IV                                     | 135,398            | 132,366  | 132,167  | 126,755  | 109,694   | 99,657  | 97,351  |
| instance V                                      | 122,310            | 120,949  | 122,116  | 123,443  | 118,946   | 116,960 | 118,460 |

# Prediction + Optimisation for MIP

SPO's subgradient is an indirect 'black box' method

 $\rightarrow$  If we know it is a MIP... can we get better gradients?

Can we compute the gradient of a MIP?

• Discrete so non-differentiable

Can we compute the gradient of an LP?

- Linear objective, so not twice differentiable
  - $\rightarrow$  Previous work: add quadratic term, differentiate QP
  - $\rightarrow$  Our work: add log barrier, differentiate *integer point* formulation!



["Interior Point Solving for LP-based prediction + optimisation", Jayanta Mandi, Tias Guns. NeurIPS20]

## Interior Point Solving for LP-based prediction + optimisation

#### KKT vs HSD

KKT, log barrier HSD, log barrier  $\lambda \; / \; \lambda\text{-cut-off} \; \; 10^{-1} \; \; 10^{-3} \; \; 10^{-10} \; \; 10^{-1} \; \; 10^{-3} \; \; 10^{-10}$ 

Regret 14365 14958 21258 10774 14620 21594

Table 1: Differentiating the HSD formulation is more efficient than differentiating the KKT condition

| Compariosn with the state of the art |           |         |         |                   |         |         |                  |                     |
|--------------------------------------|-----------|---------|---------|-------------------|---------|---------|------------------|---------------------|
|                                      | Two-stage |         | QPTL    |                   | SPO     |         | HSD, log barrier |                     |
|                                      | 0-layer   | 1-layer | 0-layer | 1-layer           | 0-layer | 1-layer | 0-layer          | 1-layer             |
| MCEL                                 | 745       | 796     | 3516    | $2 \times 10^9$   | 3327    | 3955    | 2975             | $1.6 \times 10^{7}$ |
| MSE-loss                             | (7)       | (5)     | (56)    | $(4 \times 10^7)$ | (485)   | (300)   | (620)            | $(1 \times 10^7)$   |
| Regret                               | 13322     | 13590   | 13652   | 13590             | 11073   | 12342   | 10774            | 11406               |
|                                      | (1458)    | (2021)  | (325)   | (288)             | (895)   | (1335)  | (1715)           | (1238)              |

Table 2: Our approach is able to outperform the state of the art

["Interior Point Solving for LP-based prediction + optimisation", Jayanta Mandi, Tias Guns. NeurIPS20]

# Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it nondiscrete and hence (almost) differentiable

Observation: constraints always stay the same, so the polytope is always the same.

 $\rightarrow$  Can we also use an <u>inner approximation</u>?



Figure 1: Representation of the solution pool and the continuous relaxation of set V.

# Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it nondiscrete and hence (almost) differentiable

Observation: constraints always stay the same, so the polytope is always the same.

 $\rightarrow$  Can we also use an <u>inner approximation</u>?



Figure 1: Representation of the solution pool and the continuous relaxation of set V.

#### Inner approximation = pool of known solutions

 $\rightarrow$  can replace 'solver()' by 'argmax()' over finite solutions! (SPO+)

 $\rightarrow$  can use probabilistic loss function (Noise-Contrastive Estimation)

# Prediction + Optimisation for MIP and more

<u>Inner approximation = pool of known solutions</u>

- $\rightarrow$  can replace 'solver()' by 'argmax()' over finite solutions! (SPO+)
- $\rightarrow$  can use probabilistic loss function (Noise-Contrastive Estimation)

Main advantage: do not have to call a solver for each training instance! Can 'grow' solution pool **FAST and GOOD** 



["Discrete solution pools and noise-contrastive estimation for predict-and-optimize" Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]

# It's so fast we can actually train a convolutional neural network <u>THROUGH</u> a CP problem...

Visual sudoku : )

| 06- | 107 | 080   |
|-----|-----|-------|
| 030 | 005 | 250   |
| 800 | 004 | 000   |
| 000 | 080 | 700   |
| 491 | 060 | DA8   |
| 500 | 340 | 100   |
| 003 | 079 | 010   |
| 170 | 000 | 300   |
| 050 | 000 | 9 6 8 |

|                                         | grid-acc | givens-acc | cell-acc |
|-----------------------------------------|----------|------------|----------|
| Two-stage                               | 87.50%   | 98.00%     | 98.09%   |
| Blackbox-Pool (10%)                     | 54.00%   | 89.62%     | 88.13%   |
| $\mathcal{L}_{MAP}^{(\hat{c}-c)}(10\%)$ | 74.50%   | 94.37%     | 94.51%   |
| SPO-Pool (10%)                          | 66.75%   | 92.67%     | 92.88%   |

Table 5: Classification task accuracy

For this task, training individual digits still better.



# Key take-aways:

- Explicit knowledge: use solver
- Implicit knowledge: do learning
- Joint inference / collective classification: maximize log likelihood!
- Keep revisiting the solving AND the learning, hybridize and use properties of one in the other!
- Comb. optimisation inside neural loss becoming actually feasible  $\rightarrow$  end-to-end hybrid prediction and optimisation



# Future Work

- Complexity of learned models vs. complexity of CP solving
- Faster (runtime), more accurate learning
- Interactive preference learning, multi-agent
- Other perception data (language, voice, camera)

• Wide range of applications (Industry 4.0, transport & more)