
 1

Learning from environment
in constraint solving

Tias Guns <tias.guns@kuleuven.be>

Joint work with:

- Jayanta Mandi
- Maxime Mulamba
- Victor Bucarey Lopez
- Rocs Canoy
- Ahmed K.A. Abdullah

And: (the last part)

- Peter Stuckey
- Emir Demirovic

- Michelangelo Diligenti
- Michele Lombardi

General outline

This session:
● ~60 min Principles of Data Science
● ~30 min Learning from user in CP
● ~30 min Practical (python notebook)

Afternoon session:
● ~20 min Learning from vision in CP
● ~40 min Learning from environment in CP
● ~30 min Practical (other python notebook)

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

 tacit knowledge (user preferences, social conventions)

 perception (vision, natural language, audio)

 complex environment (demand, prices, defects)

Perception data and constraint solving

ML view:

Wang, Donti, Wilder, Kolter; ICML19
 can we learn the (pairwise) sudoku

constraints?
 test limits of learning for reasoning

Our view part explicit, part implicit:
 know constraints, get predictions
 maximum likelihood problem?
 test limits of reasoning on learning

[Mulamba, Mandi, Canoy, Guns, CPAIOR20]

Perception data and constraint solving

Other application settings:

 Document analysis

 Paper-based configuration problems (tax forms)

 Object-detection based reasoning

 ...

Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naïve)

Pre-trained neural network Solving

Perception-based constraint solving

 Inspired by visual sudoku in SATNet paper [Wang, Donti, Wilder, Kolter, ICML19]

 Q: Do we need integrated end-to-end learning?

→ Keep explicit explicit (constraints) and learn implicit (img class)

put more into the constraint solving

remove arg max of each individual prediction:

and make part of the CP model!

= find the maximum likelihood solution!

 s.t. sudoku(s)

X
ij

 constant

Pre-trained neural network

put more into the constraint solving

What does that mean, maximum likelihood solution of a Sudoku?

The unconstrained max likelihood solution = argmax prediction of each image

→ sudoku constraint forbids certain solutions: find next most likely one...

In ML speak: the solver does 'joint inference' over all predictions, takes structure into account

ex. used in Natural Language Processing [Punyakanok, COLING04]

X
ij

Back to the deep learning part

Why are individual predictions insufficient?
→ each image is learned independently, there is no penalty for '9's having

very high likelihood of being an '8'

→ known as 'calibration' in the ML community (overconfidence in some
classes)

→ can actually distort the joint
 inference, but we can first
 calibrate the predictions!

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Bacl to the constraint solving

Are we using all available information?

A sudoku puzzle has to have one unique solution
→ not in current constraint model: a 2nd order constraint

But we can check it!
if the joint max likelihood image predictions has multiple solutions:
forbid and find next most likely one!

Pre-trained neural network

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

ours2

ours1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network

Perception-based constraint solving

Practical later today:
 you will implement and test hybrid approaches!

Enhancing the scope:
– Segmentation + classification + reasoning

– Object detection + segmentation + classification + reasoning

<DEMO>

http://178.62.207.46/home

http://178.62.207.46/home

Prediction + constraint solving

 Part explicit knowledge:
in a formal language

 Part implicit knowledge:
learned from data

 tacit knowledge (user preferences, social conventions)

 perception (vision, natural language, audio)

 complex environment (demand, prices, defects)

Time for end-to-end learning!

Complex environment (demand, prices)

Prediction + Optimisation aka decision-focussed learning:

 Optimize task scheduling's energy cost, by predicting energy prices

 Optimize steel plant manufacturing, by predicting steel defects

 Optimize money transport, by predicting amount of coins at clients

Prediction + Optimisation, naive

Pre-trained neural network

Can we do the (deep) learning better?

MSE loss function is not informative enough

MSE loss not the best proxy for task loss....

MSE loss not the best proxy for task loss....

Why?
 MSE = average of individual errors of the vector
 Joint inference = joint error

→ some errors worse than others!

Vector of predictions Joint inference: trades off the individual predictions

Complex environment (demand, prices)

Which errors worse? is combinatorial, need to solve to know

Goal: end-to-end learning with regret as loss

Challenges:

- each regret comp. is NP-hard

- over an exponential nr. of outcomes

- discrete & non-differentiable

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Related work using deep learning (gradient descent)

Differentiable task losses for end-to-end learning:
Black box (subgradient methods):

 - SPO+[1]: solve with f(2c* - c) (convex comb of real and predicted values)

 - bb[2]: solve with f(c + eps) perturbed predictions

White box:

 - QPTL[3]: solve Quadratic Program, differentiate KKT conditions

 - Melding[4]: solve tightened LP relaxation as QP

 - IntOpt[5]: solve LP with Interior Point, differentiate HSD

[1] Elmachtoub AN, Grigas P. Smart" predict, then optimize" arxiv, 2017
[2] Pogancic, Marin Vlastelica, et al. "Differentiation of Blackbox Combinatorial Solvers." ICLR. 2020
[3] Amos, Brandon, and J. Zico Kolter. "Optnet: Differentiable optimization as a layer in neural networks." ICML, 2017
[4] Wilder B, Dilkina B, Tambe M. “Melding the data-decisions pipeline: Decision-focused learning for comb. optimization.” AAAI, 2020
[5] Mandi, Guns. “Interior Point Solving for LP-based prediction+optimisation.” NeurIPS, 2020

SPO+: a deeper look at the (deep) learning

we need to solve a CP on line 7 for every training example
(typically: 10-50 epochs, of 500 to 5000 samples...)

Standard: with SPO+:

Can we do the solving better?

Can we do the solving better?

Observe: constraints always the same,
 only cost vector y^ changes,
and we solve it for thousands of y^ values,
 each instance having a different true optimal solution

Can we do the solving better?

 Solving MIP = repeatedly solving LP
– Do we need to solve the MIP to optimality? or to a small gap?

– Can we replace the MIP by the LP relaxation?

 Solving LP = repeatedly finding improved basis
– Can we warm-start from previous basis's?
[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Observe: constraints always the same,
 only cost vector c changes,
and we solve it for thousands of c values,
 each instance having a different true optimal solution

LP relaxations and warmstarts:
 Faster training time = possible to do wider grid search
 Faster training time = possible to scale up to larger problems

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

 SPO-relax is scalable

 Really hard instances:
(1+ hour for single MIP solution)

 SPO-relax with total time budget:

[Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems, Jayanta Mandi, Emir Demirovic, Peter Stuckey, Tias Guns. AAAI20]

Prediction + Optimisation for MIP

SPO's subgradient is an indirect 'black box' method

→ If we know it is a MIP... can we get better gradients?

Can we compute the gradient of a MIP?
● Discrete so non-differentiable

Can we compute the gradient of an LP?
● Linear objective, so not twice differentiable

→ Previous work: add quadratic term, differentiate QP

→ Our work: add log barrier, differentiate integer point formulation!

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurIPS20]

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurIPS20]

LP solving with barrier: Int. Point method

[“Interior Point Solving for LP-based prediction + optimisation”, Jayanta Mandi, Tias Guns. NeurIPS20]

Interior Point Solving for LP-based prediction + optimisation

Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-
discrete and hence (almost) differentiable

Observation: constraints always stay the same,
 so the polytope is always the same.

→ Can we also use an inner approximation?

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]

Prediction + Optimisation for MIP and more

All current method use a 'continuous approximation' to make it non-
discrete and hence (almost) differentiable

Observation: constraints always stay the same,
 so the polytope is always the same.

→ Can we also use an inner approximation?

Inner approximation = pool of known solutions

→ can replace 'solver()' by 'argmax()' over finite solutions! (SPO+)

→ can use probabilistic loss function (Noise-Contrastive Estimation)

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]

Prediction + Optimisation for MIP and more

Inner approximation = pool of known solutions

→ can replace 'solver()' by 'argmax()' over finite solutions! (SPO+)

→ can use probabilistic loss function (Noise-Contrastive Estimation)

Main advantage: do not have to call a solver for each training
instance! Can 'grow' solution pool FAST and GOOD

[“Discrete solution pools and noise-contrastive estimation for predict-and-optimize” Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns, arxiv 2020]

It's so fast we can actually train a convolutional neural
network THROUGH a CP problem...

 Visual sudoku :)

For this task, training individual digits still better.

Key take-aways:

 Explicit knowledge: use solver

 Implicit knowledge: do learning

 Joint inference / collective classification:
 maximize log likelihood!

 Keep revisiting the solving AND the learning,
hybridize and use properties of one in the other!

 Comb. optimisation inside neural loss becoming actually feasible
→ end-to-end hybrid prediction and optimisation

Future Work

 Complexity of learned models vs. complexity of CP solving

 Faster (runtime), more accurate learning

 Interactive preference learning, multi-agent

 Other perception data (language, voice, camera)

 Wide range of applications (Industry 4.0, transport & more)

