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Context – new area of research, since 2018...

Understanding how to
apply AR & FM in ML !
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Recent & ongoing ML successes
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But ML models are brittle — adversarial examples
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Adversarial examples can be very problematic

Finlayson et al., Nature 2019
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Also, some ML models are interpretable

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

M?

1

0

V?

0

0

1

1

1

if ␣Meeting then Hike
if ␣Vacation then ␣Hike

decision|rule lists|sets
decision trees; ...
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But other ML models are not (interpretable)...

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?
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What is eXplainable AI (XAI)?

©DARPA
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XAI & EU guidelines (AI HLEG)
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XAI & the principle of explicability
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XAI & the principle of explicability

& hundreds of recent papers!
6 / 106



ML vs. AR

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit
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ML vs. AR – among today’s grand challenges?

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

heuristics; portfolios;
abstractions; tactics; …
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logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

simplify system design

build trust; debug;
aid decision making 
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ANITI’s DeepLEVER chair – our current work
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ANITI’s DeepLEVER chair – our current work

Explanations

• What is a rigorous explanation?
• Which explanations to compute?
• Computing rigorous explanations
• Assessing heuristic explanations
• Heuristic explanations (with guarantees)
• Tractable explanations
• High-level explanations?
• ...

[INM19a, INM19b, INM19c, Ign20, MGC+20]
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ANITI’s DeepLEVER chair – our current work

Synthesis/Learning

• Learning ML models can be cast as a
function synthesis problem

• Learning optimal decision trees and sets
• Can conceivably exploit constraint/logic
based methods to synthesize any ML model

• Scalability is a known issue!

• What about synthesis for robustness?
• What about synthesis for fairness?

[NIPM18, IPNM18, YISB20, HSHH20]
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ANITI’s DeepLEVER chair – our current work

Fairness

• Which fairness criteria to use?
• Dataset bias vs. model fairness
• Links with explainability
• Links with robustness

[ICS+20]
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ANITI’s DeepLEVER chair – our current work

Verification/Robustness

• More efficient reasoning tools
• E.g. more efficient NN reasoning?

• More effective/compact constraint-based
encodings

• Alternatives to neural networks
• Binarized NNs
• Extensions of BTs, (D)RFs, etc.
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Today’s lecture

• Part #1: Preliminaries
• Logic-based representations of ML models

• Part #2: Explainability
• Formal explanations vs. heuristic explanations
• Tractable explanations
• Duality in explanations

• Part #3: Fairness
• First inroads into applying formal methods in fairness

• Part #4: Learning (interpretable models)
• Learning decision sets (DSs) & decision trees (DTs)

• Part #5: Robustness (brief comments)
• Applying formal methods in validating robustness of ML models
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Part 1

Preliminaries



Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models
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Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106



Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106



Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106



Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106



Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models
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Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ ( φ, if:

@(x P F).[τ(x)Ñφ(x)]

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1( φ and ␣x2( φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ and x1 ^ x3( φ

• For non-boolean feature spaces, we let φc denote the predicate φ(x) = c, i.e. φc(x) P t0, 1u
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Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π( φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2( φ

• Also, x1* φ and x2* φ

• A disjunction of literals ρ (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ( ρ

2. For any ρ1 Ĺ ρ, φ* ρ1
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Recap tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT:
• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/
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Lecture on SAT &
SMT assumed.
See links below.
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Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models
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Rules with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?

• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver
6 There exists a model iff there exists a point in feature space yielding both predictions
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Decision sets

• Example ML model:
Features: x1, x2 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification)
6 There exists a model iff there exists a point in feature space yielding both predictions
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Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]
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Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]
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n
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j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

Modeling ML models
with logic is not only

possible but also simple !
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Boosted trees – glimpse of SMT encoding

• Number of trees: mˆ q, with m classes and q trees per class
• Each non-leaf represented by literal (fj is true?)

• Associate boolean variable with literal: bi Ø (fi?)

• Each leaf node represented by some real value
• For each path in each tree:

• If path condition holds, then tree value is leaf value
ľ

niPRp
bni.idx

ľ

niPLp
␣bni.idx Ñ rl = nd.val

• Score of class j is sum over its q trees: vj =
řq
l=1 rqj+l 21 / 106



Questions for part 1?
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Part 2

Explainability



Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples
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Computing explanations – assumptions

[INM19a]

• Categorical features, F = t1, 2, . . . ,nu, each taking values from a(n unordered) domain Di

• Feature space: F = Πn
i=1Di

• ML model M computes classification functionM(x) P t‘ , au, with x P F

• Instance v P F, with prediction c = M(v)
• Prediction literal: L fi (M(v) = c)

• Each point v P F is also represented as a set of literals (a cube), C = t(xi = vi)|i P Fu

24 / 106



Our approach

Component Representation Notes

C
Conjunction of literals,
i.e. cube

M
Model encoding, e.g.
SAT/SMT/CP/ILP/FOL

L
Predicted class, i.e. lit-
eral

25 / 106



Relating with abduction

What we know C ^M( L

Propositional
Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M( L

But, Cm ^M* K is tautology
And, Cm ^M( L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants

–
i.e. explanations!
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–
i.e. explanations!
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Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M( L

But, Cm ^M* K is tautology
And, Cm ^M( L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants –
i.e. explanations!

Obs: For any instance consis-
tent with Cm, and given the

model M, the prediction is L !
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Computing one subset-minimal explanation

Input: formula M, input cube C, prediction L
Output: Subset-minimal explanation Cm Ď C

begin
for l P C :

if Entails(Cztlu,MÑ L) :
C Ð Cztlu

return C
end
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begin
for l P C :

if Entails(Cztlu,MÑ L) :
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return C
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Computes
some prime
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Computing one cardinality-minimal explanation

Input: formula M, input cube C, prediction L
Output: Cardinality-minimal explanation Cm Ď C

ΓÐH

while true do
Cm Ð MinimumHS(Γ) // Implicit hitting set dualization
if Entails(Cm,MÑ L) :

return Cm
else:

µÐ GetAssignment()
CT Ð PickFalseLits(CzCm, µ)
ΓÐ ΓY CT

end
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Input: formula M, input cube C, prediction L
Output: Cardinality-minimal explanation Cm Ď C

ΓÐH

while true do
Cm Ð MinimumHS(Γ) // Implicit hitting set dualization
if Entails(Cm,MÑ L) :

return Cm
else:

µÐ GetAssignment()
CT Ð PickFalseLits(CzCm, µ)
ΓÐ ΓY CT

end Computes
smallest
prime
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In summary

• Target (minimal) sufficient conditions for prediction:
• I.e. we equate explanations with (prime) implicants

• Approach computes set of literals Cm Ď C such that @(x P F).Cm(x)Ñ (M(x) = ‘)

• Note: Equating explanations with prime implicants also proposed in compilation-based
approaches [SCD18, SCD19, DH20, Dar20]

• Referred to as PI-explanations
• Main difference: compilation vs. use of NP oracles
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Recap – encoding NNs

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]

30 / 106



Recap – encoding NNs (using MILP)

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u
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Sample of experimental results

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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First rigorous approach
for explaining NNs !
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m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

Scales to (a few)
tens of neurons...
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Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples
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Computing heuristic explanations

• Many (highly visible) heuristic explanation approaches:
• LIME [RSG16]

• SHAP [LL17]

• Anchor [RSG18]

• ...

• Q: How to assess the quality of heuristic explanations? [NSM+19, INM19c, Ign20]
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Overview of heuristic approaches

• LIME & SHAP: [RSG16, LL17]

• Goal: learn a simple interpretable ML model, e.g. linear classifier, decision tree, etc.
• Approach: train classifier vs. game theory

• LIME is sample-based
• Obs 01: Exact SHAP explanations are as hard as computing the expected value of the model [dBLSS20]

• Obs 02: Exact SHAP explanations are #P-hard for some classes of models [dBLSS20]

• Anchor: [RSG18]

• Goal: Learn features deemed more relevant for prediction
• Anchor is sample-based

• No formal guarantees of rigor in computed explanations
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A first experiment

[INM19c]

What is the overall quality of heuristic explana-
tions in light of computed heuristic explanations?
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Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it
• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation
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Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and
1. If it does not hold globally, then fix it

• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

Scales to realistic
size boosted trees...
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XPlainer – validating, refining & repairing heuristic explanations

Compute explanation
(with Anchor)

Explanation
correct?

Repair
explanation

Refine
explanation

no

yes
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An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no
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-0.0536704734
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0.028965516

-0.0444687866

yes

no

• Example instance:

(& Anchor picks):

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)
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yes

no

reptile

venomous?

0.028965516

-0.0444687866
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no

• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)
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yes
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• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)
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Some results

Explanations

Dataset (# unique) incorrect redundant correct

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1 %
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1 % 0.1 % 0.0%
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& Google XAI service
most likely similar...
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A second experiment

[NSM+19]

How often are heuristic explanations
consistent with prediction?
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Approach

• Exploit ML model with SAT-based encoding
• In our case: used binarized neural networks (BNNs)

• Compute heuristic explanations with Anchor (similar results with LIME or SHAP)

• Use (approximate) model counter to assess how often explanation is consistent with
prediction
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Preliminary results

• Anchor often claims « 99% precision
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Preliminary results

• Anchor often claims « 99% precision; our results demonstrate otherwise

Results underscore
importance of for-
mal explanations !
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Questions on formal vs. heuristic explanations?
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Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples
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Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:

• Prediction changes if x1 can take any
value in t0, 1u?

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size
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Need for PI-explanations in DTs is ubiquitous– Russell&Norving’s book

[RN10]

Patrons

No Hungry

No Type

Yes No Fri/Sat

No Yes

Yes

Yes

None Full

No Yes

French

Italian

Thai

No Yes

Burger

Some

• PI-explanation for (P,H, T,W) = (Full, Yes, Thai,No)?

47 / 106



Need for PI-explanations in DTs is ubiquitous– Zhou’s book

[Zho12]is y ą 0.73?

cross is x ą 0.64?

cross circle

Y N

Y N

• PI-explanation for (x, y) = (1.25,´1.13)?

Obs: PI-explanations can be computed for categorical, ordinal, integer or real-valued features !
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Need for PI-explanations in DTs is ubiquitous– Alpaydin’s book

[Alp14]x1 ď 2.5?

l is x2 ď 1.0?

l l

Y N

Y N

• PI-explanation for (x1, x2) = (3.14, 0.87)?

Obs: PI-explanations can be computed for categorical, ordinal, integer or real-valued features !
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Need for PI-explanations in DTs is ubiquitous– Poole&Mackworth’s book

[PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

• PI-explanation for (L, T,A) = (Short, Follow-Up,Unknown)?
• PI-explanation for (L, T,A) = (Short, Follow-Up, Known)?
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DT explanations

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction ‘ , it suffices to ensure all

a paths remain inconsistent

• I.e. find a subset-minimal hitting set of
all a paths; these are the features to
keep

• Well-known to be solvable in
polynomial time [EG95]
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DT explanations in polynomial time

[IIM20]
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Experimental evidence

Dataset (#F #S) IAI ITI

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult ( 12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22
anneal ( 38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16
backache ( 32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54
bank ( 19 36 293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27
biodegradation ( 41 1052) 5 19 65 10 30 1 25 50 33 8 71 76 36 50 8 14 40 21
cancer ( 9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37
car ( 6 1728) 6 43 96 22 86 89 20 80 45 11 57 98 29 65 41 16 50 30
colic ( 22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25
compas ( 11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27
contraceptive ( 9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21
dermatology ( 34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 22 0 14 20 17
divorce ( 54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50
german ( 21 1000) 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22
heart-c ( 13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 81 25 50 34
heart-h ( 13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32
kr-vs-kp ( 36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35
lending ( 9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25
letter ( 16 18 668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9
lymphography ( 18 148) 6 61 76 31 35 25 16 33 21 6 21 86 11 9 0 16 16 16
mortality ( 118 13 442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19
mushroom ( 22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25
pendigits ( 16 10 992) 6 121 88 61 0 0 — — — 38 937 85 469 25 86 6 25 11
promoters ( 58 106) 1 3 90 2 0 0 — — — 3 9 81 5 20 14 33 33 33
recidivism ( 15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16
seismic_bumps ( 18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42
shuttle ( 9 58 000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30
soybean ( 35 623) 6 63 88 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10
spambase ( 57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25
spect ( 22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65
splice ( 2 3178) 3 7 50 4 0 0 — — — 88 177 55 89 0 0 — — —
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Questions on explaining DTs?
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Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs

Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction
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Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

Recap PI-explanation: minimal set of literals sufficient for prediction

By default we
consider class ‘
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Background & contribution – outline

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

NBCs XLCs Γa,Γω, δ’s
Knapsack
+ Example
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Key concepts & outcomes – NBCs & lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK(Pr(c|e))

= argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK(lPr(c|e)) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))
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Key concepts & outcomes – working with lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

a = (1, 0, 1, 0) Pr(‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r3| ‘) Pr(␣r4| ‘) lPr(‘ |a)
Pr(¨) 0.10 0.95 0.95 0.02 0.80
lPr(¨) 1.70 3.95 3.95 0.09 3.78 13.47

a = (1, 0, 1, 0) Pr(a) Pr(r1| a) Pr(␣r2| a) Pr(r3| a) Pr(␣r4| a) lPr(a |a)
Pr(¨) 0.90 0.03 0.05 0.34 0.25
lPr(¨) 3.89 0.49 1.00 2.92 2.61 10.91
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Key concepts & outcomes – working with lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

a = (1, 0, 1, 0) Pr(‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r3| ‘) Pr(␣r4| ‘) lPr(‘ |a)
Pr(¨) 0.10 0.95 0.95 0.02 0.80
lPr(¨) 1.70 3.95 3.95 0.09 3.78 13.47

a = (1, 0, 1, 0) Pr(a) Pr(r1| a) Pr(␣r2| a) Pr(r3| a) Pr(␣r4| a) lPr(a |a)
Pr(¨) 0.90 0.03 0.05 0.34 0.25
lPr(¨) 3.89 0.49 1.00 2.92 2.61 10.91

Pick class ‘ !
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Key concepts & outcomes – XLCs

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

XLC classifier: ν(e) fi w0 +
ÿ

iPR
wiei +

ÿ

jPC
σ(ej, v1j , v2j , . . . , v

dj
j )
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Key concepts & outcomes – XLCs

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

XLC classifier: ν(e) fi w0 +
ÿ

iPR
wiei +

ÿ

jPC
σ(ej, v1j , v2j , . . . , v

dj
j )

Can reduce
NBC to XLC
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Key concepts & outcomes – NBC to XLC

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

Eliminate argmax: lPr(‘)´ lPr(a) +
ÿn

i=1
(lPr(␣ei| ‘)´ lPr(␣ei| a))␣ei +

ÿn

i=1
(lPr(ei| ‘)´ lPr(ei| a))ei ą 0

Mapping to XLC: w0 fi lPr(‘)´ lPr(a)

v1j fi lPr(␣ej| ‘)´ lPr(␣ej| a)

v2j fi lPr(ej| ‘)´ lPr(ej| a)
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Key concepts & outcomes – example reduction

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32
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Key concepts & outcomes – minding the gap

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39
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Gap value: Γa fi ν(a) = w0 +
ř

jPC σ(aj, v1j , v2j , . . . , v
dj
i ) ą 0

Worst-case gap: Γω fi w0 +
ř

jPC vωj ă 0

Relate Γa and Γω : Γω = w0 +
ř

jPC v
aj
j ´

ř

jPC(v
aj
j ´ v

ω
j ) = Γa ´

ř

jPC δj = ´Φ

where, δj fi vajj ´ v
ω
j = vajj ´mintv

1
j , v2j , . . . u

Worst-case, given some min. P : w0 +
ř

jPP v
aj
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Key concepts & outcomes – computing δ’s

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

Γa δ1 δ2 δ3 δ4 Φ = ´Γω

2.56 6.43 5.90 0 2.49 12.26
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Key concepts & outcomes – 0-1 ILP
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Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Optimization problem:
min

řn
i=1 pi

s.t.
řn
i=1 δipi ą Φ

pi P t0, 1u
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Key concepts & outcomes – finding one PI-explanation

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

δ1 δ2 δ4 δ3

Sorted 6.43 5.90 2.49 0 Φ = 12.26

Sum

6.43 12.33 – –

0
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PI-explanation:
(p1 = 1)^ (p2 = 1)

i.e. (e1 = 1)^ (e2 = 0)

52 / 106



Overview of experimental results
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Questions on explaining NBCs & XLCs?
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Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples
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Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?

• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]
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A well-known example

[RN10]

Example Input Attributes Goal
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes
x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No
x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes
x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No
x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes
x7 No Yes No No None $ Yes No Burger 0–10 y7 = No
x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes
x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No
x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No
x11 No No No No None $ No No Thai 0–10 y11 = No
x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes
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A well-known example (Cont.)

• 10 features:

tA(lternate),B(ar),W(eekend),H(ungry),Pa(trons),Pr(ice),Ra(in),Re(serv.), T(ype), E(stim.)u

• Example instance (x1, with outcome y1 = Yes):

tA,␣B,␣W,H, (Pa = Some), (Pr = $$$),␣Ra,Re, (T = French), (E = 0–10)u

• A possible decision set (obtained with some off-the-shelf tool):

IF (Pa = Some)^␣(E = ą60) THEN (Wait = Yes) (R1)
IF W^␣(Pr = $$$)^␣(E = ą60) THEN (Wait = Yes) (R2)

IF ␣W^␣(Pa = Some) THEN (Wait = No) (R3)
IF (E = ą60) THEN (Wait = No) (R4)
IF ␣(Pa = Some)^ (Pr = $$$) THEN (Wait = No) (R5)
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Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa
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A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
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Some preliminary results

1. Relationship between XPs with CEx’s:

• Each XP breaks every CEx

• Each CEx breaks every XP

6 XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx
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Revisiting the example

• Restaurant dataset
• ML model is decision set (shown earlier)
• Prediction is (Wait = Yes)

• Global explanations:
1. (Pa = Some)^␣(E = ą60)
2. W^␣(Pr = $$$)^␣(E = ą60)

• Counterexamples:
1. ␣W^␣(Pa = Some)
2. (E = ą60)
3. ␣(Pa = Some)^ (Pr = $$$)

• The XP’s break the CEx’s and vice-versa
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Questions for part 2?
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Part 3

Fairness



Outline

Understanding fairness

Fairness Through Unawareness

Relating Fairness with Explanations

Learning Fair Models
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Some questions regarding fairness

[ICS+20]

• What should be the criterion for fairness of a model (a classifier)?

• What should be the criterion for dataset bias?

• What should be the criterion for fairness of a particular decision?

• How to learn a fair model from biased data?
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Basic definitions

• Classifier: boolean function φ(x, y) P t0, 1u, where
• x: values of non-protected features (salary, age, ...), and
• y: values of protected features (gender, race, ...).

• Dataset: set of tuples xx, y, cy with c P t0, 1u

• Examples:
1. Should a bank approve a loan to a customer?
2. Should a judge release a prisoner on probation?
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Criterion: fairness through unawareness (FTU)

• FTU: φ is a function only of the non-protected features x

• FTU criterion for testing unfairness of model:

Dx D(y1, y2). [y1 ‰ y2 ^ φ(x, y1) ‰ φ(x, y2)]

E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn’t

• Optimisation: only need to test criterion for y1, y2 which differ on a single feature

Possible drawbacks of FTU:
• There may be correlations between protected and non-protected features

E.g.: the bank isn’t unfair to women, they just don’t give loans to people who are pregnant!
• Positive discrimination may be a good thing

E.g.: height restrictions for army recruits are less strict for women
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FTU as a criterion for dataset bias

• FTU criterion for testing bias of a dataset D:

Dx, y1, y2.[y1 ‰ y2 ^ xx, y1, 0y, xx, y2, 1y P D]

• Criterion can be applied even if D is inconsistent (i.e. Dx, y[xx, y, 0y, xx, y, 1y P D] )
• Criterion can be tested in linear time (using hash tables) since it is equivalent to: Dx such that

|tc : Dy, xx, y, cy P Du| ą 1

|ty : Dc, xx, y, c|y P Du| ą 1
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Which criterion to pick?

• Axioms for a dataset-bias criterion:
• Coding-independence: independent of renaming or merging of non-protected
features/protected features

• Monotonicity: eliminating unprotected features cannot reduce bias
• Not arbitrary: if all data is identical on the protected features, then unbiased
• Discerning: the criterion is non-trivial
• Simplicity: bias can be proved by exhibiting just 2 examples

Theorem
The only criterion satisfying these 5 axioms is FTU

Theorem
There is no criterion which satisfies the 5 axioms and is invariant to the addition of irrelevant
features (such as month of birth)
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Local fairness: fairness of a particular decision

• An example:

• Emma wants to know if she was refused a loan because she is a woman

• The bank uses a simple model: refuse a loan if the client is unemployed or if they are a
woman

• This model is clearly unfair with respect to gender, but

• The bank claims that the decision is fair since they refused the loan because Emma is unemployed
• Emma points out there are two possible explanations for the refusal:
(1) she is unemployed, or that
(2) she is a woman,
and hence the decision should be considered unfair

• Who is right?
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Fairness of a particular decision from explanations

• Recap: a PI-explanation E of a prediction φ(z) = c is a subset-minimal set of literals from
the literals Z of z P F, which entails the prediction c:

@(x P F). [E(x)Ñ(φ(x) = c)]

• E.g. with φ(x, y) = x^ y, the decision φ(0, 0) = 0 has 2 PI-explanations: E1 = (␣x), and
E2 = (␣y)

• An explanation is fair if it includes no protected features
• A prediction φ(z) = c is:

• Universally fair: if all of its explanations are fair
• Existentially fair: if at least one of its explanations is fair

• Back to the example:
Emma’s loan refusal decision is existentially fair but not universally fair
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Complexity of checking fairness

• A model φ is fair iff all its decisions are universally fair
• Checking fairness of a model is in co-NP

• Checking existential fairness of a decision φ(z) = c is in co-NP
• It can be solved by exhaustive search over only the protected features

• Checking universal fairness of a decision φ(z) = c is in ΠP
2
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Learning fair models (from a possibly biased dataset)

Principle: we impose fairness
• Obs: this is necessarily at the cost of accuracy in the case of a biased dataset

Majority-vote solution: since φ(x, y) must be a function of x only, we maximise accuracy
by choosing the most common class c as y varies and x remains fixed

Obs: We may further sacrifice accuracy in order to obtain a simple (and hence more
human-understandable) model
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Fair decision sets with SAT

Problem: learn a boolean function φ(x1, . . . , xm) from a set of n examples
• The model φ is necessarily fair since it is a function of non-protected features x1, . . . , xm only

• In order to obtain a human-understandable model φ, we construct (multiple) K-term
DNFs, where K is a small constant

• We can encode this problem as a SAT instance with variables:
• pjk = 1 if the kth term contains xj
• qjk = 1 if the kth term contains ␣xj
• vik = 1 if the ith example satisfies the kth term
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Fair decision sets with SAT

• Clauses of the SAT instance (for 1 DNF):
1. Each positive example satisfies some term (O(n) size-K clauses)
2. No negative example satisfies any term (O(nK) size-m clauses)
3. Constraints coding the semantics of the variables (O(nmK) binary clauses)

where n = number of examples, m = number of features, K = number of terms in the DNF
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Example of the Compas dataset

• Dataset is derived from the COMPAS algorithm used for scoring a criminal defendant’s
likelihood of reoffending

• It includes protected features, such as African American, etc.
• Dataset is so biased that the maximum feasible accuracy is only 69.73%
• By sacrificing accuracy further to obtain a more interpretable (i.e. smaller) model, we found the
following decision set which has 66.32% accuracy and is fair:

IF #Priors ą 17.5^␣score_factor THEN Two_yr_Recidivism
IF #Priors ą 17.5^ Age ą 45^ Misdemeanor THEN Two_yr_Recidivism
IF #Priors ď 17.5 THEN ␣Two_yr_Recidivism
IF score_factor^ Age ď 45 THEN ␣Two_yr_Recidivism
IF score_factor^␣Misdemeanor THEN ␣Two_yr_Recidivism
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Questions for part 3?
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Part 4

Learning (Interpretable Models)



Outline

Learning Decision Sets

Learning Decision Trees – Glimpse
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Classification problems I

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples/instances): E = te1, . . . , eMu

• Binary features: F = tf1, . . . , fKu
• Literals: fr and ␣fr

• Feature space: U fi
śK

r=1tfr,␣fru

• Binary classification: C = tc0 = 0, c1 = 1u

• E partitioned into E´ and E+
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Classification problems II

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• eq P E represented as a 2-tuple (πq, ςq)

• πq P U : literals associated with the example
• ςq P t0, 1u is the class of example

• A literal lr on a feature fr, lr P tfr,␣fru, discriminates an example eq if πq[r] = ␣lr
• I.e. feature r takes the value opposite to the value in the tuple of literals of the example
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Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Binary features: F = tf1, f2, f3, f4u
• f1 fi V, f2 fi C, f3 fi M, and f4 fi E

• e1 is represented by the 2-tuple (π1, ς1),
• π1 = (␣V,␣C,M,␣E)
• ς1 = 0

• Literals V, C, ␣M and E discriminate e1

• U = tV,␣Vu ˆ tC,␣Cu ˆ tM,␣Mu ˆ tE,␣Eu
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Goal of explainable classification – our take

[IPNM18]

Given training data, learn set of DNFs that correctly classify that data, perform
suitably well on unseen data, and offer human-understandable explanations for
the predictions made
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Itemsets & decision sets

• Given F , an itemset π is an element of I fi
śK

r=1tfr,␣fr, uu
• u represents a don’t care value

• A rule is a 2-tuple (π, ς), with itemset π P I , and class ς P C
Rule (π, ς) interpreted as:
IF all specified literals in π are true, THEN pick class ς

• A decision set S is a finite set of rules – unordered

• A rule of the form D fi (H, ς) denotes the default rule of a decision set S
• Default rule is optional and used only when other rules do not apply on some feature space
point
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Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Rule 1: ((u, u,␣M, u), c1)
• Meaning: if ␣Meeting then Hike

• Rule 2: ((␣V, u, u, u), c0)
• Meaning: if ␣Vacation then ␣Hike

• Default rule: (H, c0)
• Meaning: if all other rules do not apply, then pick ␣Hike
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Issue with unordered rules

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

87 / 106



Issue with unordered rules – overlap

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

87 / 106



Issue with unordered rules – overlap

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

87 / 106



Issue with unordered rules – overlap

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

Minimize number of rules in decision set, and provide guarantees in terms of
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Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Decision set:
t((␣V, u, u, u), c0), ((u, u,␣M, u), c1)u

• No Ea-overlap

• But, there exists overlap in feature space
• a-overlap for (␣V,␣C,␣M,␣E) P UzE

• However, there exists no Ua-overlap for decision set:
t((V, u, u, u), c1), ((␣V, u, u, u), c0)u
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Succinct explanations

• If a rule fires, the set of literals represents the explanation for the predicted class
• Explanation is succinct : only the literals in the rule used; independent of example

• For the default class, must pick one falsified literal in every rule that predicts a different
class

• Explanation is not succinct : explanation depends on each example

• Obs: Uninteresting to predict c1 as negation of c0 (and vice-versa)
• Explanations also not succinct
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Stating our goals

• Assumptions:
• Represent E´ with Boolean function E0

• True for each example E´

• Represent E+ with Boolean function E1

• True for each example E+

• Also, let E0 ^ E1( K

• DNF functions to compute:
• F0 for predicting c0, while ensuring E0( F0

• F1 for predicting c1, while ensuring E1( F1
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An ideal model – MinDS0

• MinDS0:
Find the smallest DNF representations of Boolean functions F0 and F1, measured in the
number of terms, such that:
1. E0( F0
2. E1( F1
3. F1Ø F0( K

• No Ua-overlap

• Obs: MinDS0 ensures succinct explanations
• Computes F0 and F1 (i.e. no negation) and no default rule

• Complexity-wise:
• MinDS0 P ΣP

2

• A conjecture: MinDS0 hard for ΣP
2 (from late 2017)
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Curbing our expectations I

• MinDS4: Minimize F0, given F1 ” E1 constant, and such that
1. E0( F0

2. F0 ^ E1( K
• No a-overlap;
• No succinct explanations for F1

• MinDS3: Same as MinDS4, but target F1 given F0 ” E0 constant
• Also, no a-overlap;
• No succinct explanations for F0

• MinDS2: Minimize both F0 and F1, such that
1. E0( F0

2. E1( F1

3. F0 ^ E1( K
4. F1 ^ E0( K
• Also, no Ea-overlap; but (UzE)a-overlap may exist
• All explanations succinct
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Curbing our expectations II

• MinDS1: Minimize both F0 and F1, such that
1. E0( F0

2. E1( F1

3. F1 ^ F0( K

• No Ua-overlap
• Default rule may be required for points in UzE
• And, default rule explanations not succinct

• Complexity-wise:
• Decision formulations of MinDS1, MinDS2, MinDS3, MinDS4 are complete for NP

• In principle, could be solved with MaxSAT
• But no closed MaxSAT models for now
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Computing explainable decision sets

• Our work: [IPNM18]

• Adapted old SAT encodings to MinDS3 & MinDS4 [KKRR’92]

• Developed new SAT encodings for MinDS3 & MinDS4

• Developed SAT encodings for MinDS2 and MinDS1

• Proposed symmetry-breaking constraints (SBPs)

• Covered in the lecture: SAT encoding for MinDS3
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SAT model for MinDS3 – overview

• DNF representation for F1

• Consider N terms
• Each term corresponds to a rule

F r

• Allow literals to be associated or not with each rule

• Rules for some class must discriminate examples of other classes

• Every example must be covered by one of the rules for its class
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Boolean variables for MinDS3

F r

• sjr: whether a literal in feature r is skipped for rule j

• ljr polarity of literal on feature r for rule j, when the feature is not skipped

• d0jr: whether feature r of rule j discriminates value 0

• d1jr: whether feature r of rule j discriminates value 1

• crjq: whether (used) rule j covers eq P E+
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Constraints for MinDS3 I

• Each term must have some literals:( K
Ž

r=1
␣sjr

)
j P [N]

• Account for which literals are discriminated by which rules:

d0jrØ␣sjr ^ ljr j P [N]^ r P [K]

d1jrØ␣sjr ^␣ljr j P [N]^ r P [K]

• Discriminate all the negative examples in each term
• eq P E´: some negative example
• σ(r, q): sign of feature fr for eq( K

Ž

r=1
dσ(r,q)j,r

)
j P [N]^ eq P E´
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Constraints for MinDS3 II

• Each positive example must be covered by some rule
• Define whether a rule covers some specific positive example:

crjqØ
( K

Ź

r=1

␣dσ(r,q)
j,r

)
j P [N]^ eq P E+

• And, each eq P E+ must be covered by some rule:(
N

Ž

j=1

crjq

)
eq P E+

• The model uses O(NˆMˆ K) clauses and literals
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Experimental setup & initial results

• 49 datasets from the PMLB repository
• Assessment of MinDS1, MinDS2 and MP92, w/ and w/o SBPs [IPNM18]

• A basic model MP92 developed in the 90s [KKRR92]

• We devised SBPs for the MinDS and the MP92 models
• Comparison with (state of the art) IDS [LBL16]

• Heuristic approach, using smooth local search
• Default settings & additional settings

• All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

• Timeout of 600s and memout of 10GB

• There are recent improvements [YISB20]
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Outline

Learning Decision Sets

Learning Decision Trees – Glimpse

100 / 106



Propositional encodings for DTs

• Proposed tight encoding for computing smallest decision tree [NIPM18]

• Encoding also serves to pick the structure of the binary tree

• Encoding much tighter (and more general) than earlier work [BHO09]

SAT Weather Mouse Cancer Car Income
DT2˚ 27K 3.5M 92G 842M 354G
DT1 190K 1.2M 5.2M 4.1M 1.2G

• Several recent alternative proposals [ANS20b, VNP+20, HSHH20, JM20, ANS20a, Ave20, HRS19, VZ19]

• Several approaches outperform our work
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Questions for part 4?
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Part 5

(Comments on) Robustness



Validating robustness in NNs

[HKWW17, KBD+17, SGM+18, KHI+19]

• Goal: prove properties of ML models
• Some target objective is satisfied
• Some bad state is not reached
• Small-distance adversarial examples are not observed

• Tradeoffs: soundness vs. completeness vs. both

• Example approach: [KBD+17, KHI+19]

• Logic/constraint-based encoding of ML models
• Dedicated engine to reason about NNs: Reluplex
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Conclusions

• Overview of (our) work at intersection of AR & ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness

• Work offers (often viable) alternative to heuristic-based solutions
• Fascinating range of research topics
• Exploiting formal methods in offering much-needed rigor to the emerging field of ML

• Many challenges lie ahead:
• Scalability, scalability, ... (often a perception, but ...)
• Adoption, adoption, ... (evidence suggests no alternative, but ...)

• Our remit@ ANITI:

To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques
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Questions?

Acknowledgment: joint work with M. Cooper, T. Gerspacher, E. Hebrard,
A. Ignatiev, I. Izza, N. Narodytska, N. Asher, F. Pereira, M. Siala, et al.
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