
MACHINE LEARNING MEETS AUTOMATED REASONING:
EXPLAINABILITY, FAIRNESS, ROBUSTNESS AND MODEL LEARNING

Joao Marques-Silva

ANITI, IRIT & CNRS, Toulouse, France

November 2020

Context – my team’s recent & not so recent work...

2 / 106

Context – new area of research, since 2018...

2 / 106

Context – new area of research, since 2018...

Understanding how to
apply AR & FM in ML !

2 / 106

Recent & ongoing ML successes

3 / 106

But ML models are brittle — adversarial examples

4 / 106

But ML models are brittle — adversarial examples

4 / 106

But ML models are brittle — adversarial examples

http://g
radien

tscienc
e.org/i

ntro_a
dversa

rial/

4 / 106

Adversarial examples can be very problematic

Finlayson et al., Nature 2019

4 / 106

Also, some ML models are interpretable

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

M?

1

0

V?

0

0

1

1

1

if ␣Meeting then Hike
if ␣Vacation then ␣Hike

decision|rule lists|sets
decision trees; ...

5 / 106

Also, some ML models are interpretable

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

M?

1

0

V?

0

0

1

1

1

if ␣Meeting then Hike
if ␣Vacation then ␣Hike

decision|rule lists|sets
decision trees; ...

5 / 106

But other ML models are not (interpretable)...

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?

5 / 106

But other ML models are not (interpretable)...

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?

5 / 106

But other ML models are not (interpretable)...

©DARPA

Which features matter?

Are there general explanations??

Why does the NN predict a cat?

5 / 106

But other ML models are not (interpretable)...

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?

5 / 106

What is eXplainable AI (XAI)?

©DARPA
6 / 106

Why XAI?

6 / 106

Why XAI?

6 / 106

Why XAI?

6 / 106

Why XAI?

©DARPA
6 / 106

Why XAI?

©DARPA
6 / 106

XAI & EU guidelines (AI HLEG)

6 / 106

XAI & the principle of explicability

6 / 106

XAI & the principle of explicability

& hundreds of recent papers!
6 / 106

ML vs. AR

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

7 / 106

ML vs. AR – among today’s grand challenges?

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

heuristics; portfolios;
abstractions; tactics; …

7 / 106

ML vs. AR – among today’s grand challenges?

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

7 / 106

ML vs. AR – among today’s grand challenges?

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

simplify system design

build trust; debug;
aid decision making

7 / 106

ANITI’s DeepLEVER chair – our current work

8 / 106

ANITI’s DeepLEVER chair – our current work

Explanations

• What is a rigorous explanation?
• Which explanations to compute?
• Computing rigorous explanations
• Assessing heuristic explanations
• Heuristic explanations (with guarantees)
• Tractable explanations
• High-level explanations?
• ...

[INM19a, INM19b, INM19c, Ign20, MGC+20]

8 / 106

ANITI’s DeepLEVER chair – our current work

Synthesis/Learning

• Learning ML models can be cast as a
function synthesis problem

• Learning optimal decision trees and sets
• Can conceivably exploit constraint/logic
based methods to synthesize any ML model

• Scalability is a known issue!

• What about synthesis for robustness?
• What about synthesis for fairness?

[NIPM18, IPNM18, YISB20, HSHH20]

8 / 106

ANITI’s DeepLEVER chair – our current work

Fairness

• Which fairness criteria to use?
• Dataset bias vs. model fairness
• Links with explainability
• Links with robustness

[ICS+20]

8 / 106

ANITI’s DeepLEVER chair – our current work

Verification/Robustness

• More efficient reasoning tools
• E.g. more efficient NN reasoning?

• More effective/compact constraint-based
encodings

• Alternatives to neural networks
• Binarized NNs
• Extensions of BTs, (D)RFs, etc.

8 / 106

Today’s lecture

• Part #1: Preliminaries
• Logic-based representations of ML models

• Part #2: Explainability
• Formal explanations vs. heuristic explanations
• Tractable explanations
• Duality in explanations

• Part #3: Fairness
• First inroads into applying formal methods in fairness

• Part #4: Learning (interpretable models)
• Learning decision sets (DSs) & decision trees (DTs)

• Part #5: Robustness (brief comments)
• Applying formal methods in validating robustness of ML models

9 / 106

Part 1

Preliminaries

Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models

10 / 106

Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106

Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106

Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106

Classification problems

• Set of features F = t1, 2, . . . ,nu, each taking values from a domain Di
• Features can be categorical or ordinal, discrete or real-valued
• Feature space: F = Πn

i=1Di

• ML model M computes classification function φ : FÑ K
• For simplicity, we will use K = t‘ , au

• Instance v P F, with prediction c = φ(v), c P K
• Obs: instance « example « sample « point

• Each v P F is also represented as a set of literals, Cv = t(xi = vi)|i P Fu
• For boolean features, xi = 0 represented by ␣xi and xi = 1 represented by xi

11 / 106

Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models

12 / 106

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• For non-boolean feature spaces, we let φc denote the predicate φ(x) = c, i.e. φc(x) P t0, 1u

13 / 106

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]

• An example:
• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• For non-boolean feature spaces, we let φc denote the predicate φ(x) = c, i.e. φc(x) P t0, 1u

13 / 106

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]
• An example:

• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• For non-boolean feature spaces, we let φc denote the predicate φ(x) = c, i.e. φc(x) P t0, 1u

13 / 106

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]
• An example:

• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• For non-boolean feature spaces, we let φc denote the predicate φ(x) = c, i.e. φc(x) P t0, 1u

13 / 106

Entailment

• Let φ represent some formula, defined on feature space F, and representing a function
φ : FÑ t0, 1u

• Let τ represent some other formula, also defined on F, and with τ : FÑ t0, 1u

• We say that τ entails φ, written as τ (φ, if:

@(x P F).[τ(x)Ñφ(x)]
• An example:

• F = t0, 1u2

• φ(x1, x2) = x1 _␣x2
• Clearly, x1(φ and ␣x2(φ

• Another example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ and x1 ^ x3(φ

• For non-boolean feature spaces, we let φc denote the predicate φ(x) = c, i.e. φc(x) P t0, 1u

13 / 106

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals ρ (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(ρ

2. For any ρ1 Ĺ ρ, φ* ρ1

14 / 106

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals ρ (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(ρ

2. For any ρ1 Ĺ ρ, φ* ρ1

14 / 106

Prime implicants & implicates

• A conjunction of literals π (which will be viewed as a set of literals where convenient) is a
prime implicant of some function φ if,
1. π(φ

2. For any π1 Ĺ π, π1* φ

• Example:
• F = t0, 1u3

• φ(x1, x2, x3) = x1 ^ x2 _ x1 ^ x3
• Clearly, x1 ^ x2(φ

• Also, x1* φ and x2* φ

• A disjunction of literals ρ (also viewed as a set of literals where convenient) is a prime
implicate of some function φ if
1. φ(ρ

2. For any ρ1 Ĺ ρ, φ* ρ1

14 / 106

Recap tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT:
• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

15 / 106

https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/

Recap tools of the trade

• SAT: decision problem for propositional logic
• Formulas most often represented in CNF
• There are optimization variants: MaxSAT, PBO, MinSAT, etc.
• There are quantified variants: QBF, QMaxSAT, etc.

• SMT: decision problem for (decidable) fragments of first-order logic (FOL)
• There are optimization variants: MaxSMT, etc.
• There are quantified variants

• MILP: decision/optimization problems defined on conjunctions of linear inequalities over
integer & real-valued variables

• CP: constraint programming
• There are optimization/quantified variants

• Background on SAT/SMT:
• https://alexeyignatiev.github.io/ssa-school-2019/
• https://alexeyignatiev.github.io/ijcai19tut/

Lecture on SAT &
SMT assumed.
See links below.

15 / 106

https://alexeyignatiev.github.io/ssa-school-2019/
https://alexeyignatiev.github.io/ijcai19tut/

Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models

16 / 106

Rules with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?

• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver
6 There exists a model iff there exists a point in feature space yielding both predictions

17 / 106

Rules with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?

• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver
6 There exists a model iff there exists a point in feature space yielding both predictions

17 / 106

Rules with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?
• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver
6 There exists a model iff there exists a point in feature space yielding both predictions

17 / 106

Rules with ordinal features

• Example ML model:
Features: x1, x2 P t0, 1, 2u (integer)
Rules:

IF 2x1 + x2 ą 0 THEN predict ‘

IF 2x1 ´ x2 ď 0 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?
• Yes, of course: pick x1 = 0 and x2 = 1

• A formalization:

yp Ø (2x1 + x2 ą 0) ^ yn Ø (2x1 ´ x2 ď 0) ^ (yp) ^ (yn)

... and solve with SMT solver
6 There exists a model iff there exists a point in feature space yielding both predictions

17 / 106

Decision sets

• Example ML model:
Features: x1, x2 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification)
6 There exists a model iff there exists a point in feature space yielding both predictions

18 / 106

Decision sets

• Example ML model:
Features: x1, x2 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?

• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification)
6 There exists a model iff there exists a point in feature space yielding both predictions

18 / 106

Decision sets

• Example ML model:
Features: x1, x2 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?
• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification)
6 There exists a model iff there exists a point in feature space yielding both predictions

18 / 106

Decision sets

• Example ML model:
Features: x1, x2 P t0, 1u (boolean)
Rules:

IF x1 ^␣x2 ^ x3 THEN predict ‘

IF x1 ^␣x3 ^ x4 THEN predict a

IF x3 ^ x4 THEN predict a

• Q: Can the model predict both ‘ and a for some instance?
• Yes, certainly: pick (x1, x2, x3, x4) = (1, 0, 1, 1)

• A formalization:
yp,1 Ø (x1 ^␣x2 ^ x3) ^
yn,1 Ø (x1 ^␣x3 ^ x4) ^
yn,2 Ø (x3 ^ x4) ^ (yp Ø yp,1) ^
(yn Ø (yn,1 _ yn,2))^ (yp) ^ (yn)

... and solve with SAT solver (after clausification)
6 There exists a model iff there exists a point in feature space yielding both predictions

18 / 106

Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]

19 / 106

Neural networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]

19 / 106

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

20 / 106

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

20 / 106

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

Simpler encodings exist, but not as effective [KBD+17]

Modeling ML models
with logic is not only

possible but also simple !

20 / 106

Boosted trees – glimpse of SMT encoding

• Number of trees: mˆ q, with m classes and q trees per class
• Each non-leaf represented by literal (fj is true?)

• Associate boolean variable with literal: bi Ø (fi?)

• Each leaf node represented by some real value
• For each path in each tree:

• If path condition holds, then tree value is leaf value
ľ

niPRp
bni.idx

ľ

niPLp
␣bni.idx Ñ rl = nd.val

• Score of class j is sum over its q trees: vj =
řq
l=1 rqj+l 21 / 106

Questions for part 1?

22 / 106

Part 2

Explainability

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

23 / 106

Computing explanations – assumptions

[INM19a]

• Categorical features, F = t1, 2, . . . ,nu, each taking values from a(n unordered) domain Di

• Feature space: F = Πn
i=1Di

• ML model M computes classification functionM(x) P t‘ , au, with x P F

• Instance v P F, with prediction c = M(v)
• Prediction literal: L fi (M(v) = c)

• Each point v P F is also represented as a set of literals (a cube), C = t(xi = vi)|i P Fu

24 / 106

Our approach

Component Representation Notes

C
Conjunction of literals,
i.e. cube

M
Model encoding, e.g.
SAT/SMT/CP/ILP/FOL

L
Predicted class, i.e. lit-
eral

25 / 106

Relating with abduction

What we know C ^M(L

Propositional
Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M(L

But, Cm ^M* K is tautology
And, Cm ^M(L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants

–
i.e. explanations!

26 / 106

Relating with abduction

What we know C ^M(L

Propositional
Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M(L

But, Cm ^M* K is tautology
And, Cm ^M(L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants

–
i.e. explanations!

26 / 106

Relating with abduction

What we know C ^M(L

Propositional
Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M(L

But, Cm ^M* K is tautology
And, Cm ^M(L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants

–
i.e. explanations!

26 / 106

Relating with abduction

What we know C ^M(L

Propositional
Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M(L

But, Cm ^M* K is tautology
And, Cm ^M(L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants

–
i.e. explanations!

26 / 106

Relating with abduction

What we know C ^M(L

Propositional
Abduction

Hypotheses C
Theory M
Manifestation L

Goal Find Cm Ď C, s.t. Cm^M* K^ Cm^M(L

But, Cm ^M* K is tautology
And, Cm ^M(L iff Cm(MÑL
Thus, Cm is prime implicant of MÑL

We can compute subset-/cardinality-minimal (prime) implicants –
i.e. explanations!

Obs: For any instance consis-
tent with Cm, and given the

model M, the prediction is L !

26 / 106

Computing one subset-minimal explanation

Input: formula M, input cube C, prediction L
Output: Subset-minimal explanation Cm Ď C

begin
for l P C :

if Entails(Cztlu,MÑ L) :
C Ð Cztlu

return C
end

27 / 106

Computing one subset-minimal explanation

Input: formula M, input cube C, prediction L
Output: Subset-minimal explanation Cm Ď C

begin
for l P C :

if Entails(Cztlu,MÑ L) :
C Ð Cztlu

return C
end

Computes
some prime

27 / 106

Computing one cardinality-minimal explanation

Input: formula M, input cube C, prediction L
Output: Cardinality-minimal explanation Cm Ď C

ΓÐH

while true do
Cm Ð MinimumHS(Γ) // Implicit hitting set dualization
if Entails(Cm,MÑ L) :

return Cm
else:

µÐ GetAssignment()
CT Ð PickFalseLits(CzCm, µ)
ΓÐ ΓY CT

end

28 / 106

Computing one cardinality-minimal explanation

Input: formula M, input cube C, prediction L
Output: Cardinality-minimal explanation Cm Ď C

ΓÐH

while true do
Cm Ð MinimumHS(Γ) // Implicit hitting set dualization
if Entails(Cm,MÑ L) :

return Cm
else:

µÐ GetAssignment()
CT Ð PickFalseLits(CzCm, µ)
ΓÐ ΓY CT

end Computes
smallest
prime

28 / 106

In summary

• Target (minimal) sufficient conditions for prediction:
• I.e. we equate explanations with (prime) implicants

• Approach computes set of literals Cm Ď C such that @(x P F).Cm(x)Ñ (M(x) = ‘)

• Note: Equating explanations with prime implicants also proposed in compilation-based
approaches [SCD18, SCD19, DH20, Dar20]

• Referred to as PI-explanations
• Main difference: compilation vs. use of NP oracles

29 / 106

Recap – encoding NNs

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block, and

• Compute x1 given input x, weights matrix A, and bias vector b
• Compute output y given x1 and activation function

• Each unit uses a ReLU activation function [NH10]

30 / 106

Recap – encoding NNs (using MILP)

Computation for a NN ReLU block, in two steps:

x1 = A ¨ x + b
y = max(x1, 0)

Encoding each block: [FJ18]

n
ÿ

j=1

ai,jxj + bi = yi ´ si

zi = 1Ñ yi ď 0

zi = 0Ñ si ď 0

yi ě 0, si ě 0, zi P t0, 1u

31 / 106

Sample of experimental results

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

32 / 106

Sample of experimental results

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

32 / 106

Sample of experimental results

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

First rigorous approach
for explaining NNs !

Scales to (a few)
tens of neurons...

32 / 106

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

33 / 106

Computing heuristic explanations

• Many (highly visible) heuristic explanation approaches:
• LIME [RSG16]

• SHAP [LL17]

• Anchor [RSG18]

• ...

• Q: How to assess the quality of heuristic explanations? [NSM+19, INM19c, Ign20]

34 / 106

Computing heuristic explanations

• Many (highly visible) heuristic explanation approaches:
• LIME [RSG16]

• SHAP [LL17]

• Anchor [RSG18]

• ...

• Q: How to assess the quality of heuristic explanations? [NSM+19, INM19c, Ign20]

34 / 106

Overview of heuristic approaches

• LIME & SHAP: [RSG16, LL17]

• Goal: learn a simple interpretable ML model, e.g. linear classifier, decision tree, etc.
• Approach: train classifier vs. game theory

• LIME is sample-based
• Obs 01: Exact SHAP explanations are as hard as computing the expected value of the model [dBLSS20]

• Obs 02: Exact SHAP explanations are #P-hard for some classes of models [dBLSS20]

• Anchor: [RSG18]

• Goal: Learn features deemed more relevant for prediction
• Anchor is sample-based

• No formal guarantees of rigor in computed explanations

35 / 106

A first experiment

[INM19c]

What is the overall quality of heuristic explana-
tions in light of computed heuristic explanations?

36 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it
• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

37 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it
• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

37 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it
• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

37 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and
1. If it does not hold globally, then fix it

• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

37 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and
1. If it does not hold globally, then fix it

• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

37 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and
1. If it does not hold globally, then fix it

• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

37 / 106

Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute heuristic explanation for some instance

• Use our abduction-based approach to assess whether heuristic explanation holds
globally, i.e. whether it is a PI-explanation, and
1. If it does not hold globally, then fix it

• Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it
• Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

Scales to realistic
size boosted trees...

37 / 106

XPlainer – validating, refining & repairing heuristic explanations

Compute explanation
(with Anchor)

Explanation
correct?

Repair
explanation

Refine
explanation

no

yes

38 / 106

An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

39 / 106

An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance:

(& Anchor picks):

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)

39 / 106

An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance (& Anchor picks):

IF (animal_name = pitviper)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^ predator^␣toothed^ backbone^ breathes^
venomous^␣fins^ (legs = 0)^ tail^␣domestic^␣catsize

THEN (class = reptile)

39 / 106

An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Explanation obtained with Anchor: [RSG18]

IF ␣hair^␣milk^␣toothed^␣fins
THEN (class = reptile)

39 / 106

An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• But, explanation incorrectly “explains” another instance (from training data!)

IF (animal_name = toad)^␣hair^␣feathers^ eggs^␣milk^
␣airborne^␣aquatic^␣predator^␣toothed^ backbone^ breathes^
␣venomous^␣fins^ (legs = 4)^␣tail^␣domestic^␣catsize

THEN (class = amphibian)

39 / 106

Some results

Explanations

Dataset (# unique) incorrect redundant correct

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1 %
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1 % 0.1 % 0.0%

40 / 106

Some results

Explanations

Dataset (# unique) incorrect redundant correct

LIME Anchor SHAP LIME Anchor SHAP LIME Anchor SHAP

adult (5579) 61.3% 80.5% 70.7% 7.9% 1.6% 10.2% 30.8% 17.9% 19.1 %
lending (4414) 24.0% 3.0% 17.0% 0.4% 0.0% 2.5% 75.6% 97.0% 80.5%
rcdv (3696) 94.1% 99.4% 85.9% 4.6% 0.4% 7.9% 1.3% 0.2% 6.2%

compas (778) 71.9% 84.4% 60.4% 20.6% 1.7% 27.8% 7.5% 13.9% 11.8%
german (1000) 85.3% 99.7% 63.0% 14.6% 0.2% 37.0% 0.1 % 0.1 % 0.0%

& Google XAI service
most likely similar...

40 / 106

A second experiment

[NSM+19]

How often are heuristic explanations
consistent with prediction?

41 / 106

Approach

• Exploit ML model with SAT-based encoding
• In our case: used binarized neural networks (BNNs)

• Compute heuristic explanations with Anchor (similar results with LIME or SHAP)

• Use (approximate) model counter to assess how often explanation is consistent with
prediction

42 / 106

Preliminary results

• Anchor often claims « 99% precision

43 / 106

Preliminary results

• Anchor often claims « 99% precision; our results demonstrate otherwise

43 / 106

Preliminary results

• Anchor often claims « 99% precision; our results demonstrate otherwise

Results underscore
importance of for-
mal explanations !

43 / 106

Questions on formal vs. heuristic explanations?

44 / 106

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

45 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:

• Prediction changes if x1 can take any
value in t0, 1u?

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:

• Prediction changes if x1 can take any
value in t0, 1u?

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:

• Prediction changes if x1 can take any
value in t0, 1u?

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:

• Prediction changes if x1 can take any
value in t0, 1u?

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:
• Prediction changes if x1 can take any
value in t0, 1u?

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:
• Prediction changes if x1 can take any
value in t0, 1u? No

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:
• Prediction changes if x1 can take any
value in t0, 1u? No

• Prediction changes if x2 and x1 can take
any value in t0, 1u?

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:
• Prediction changes if x1 can take any
value in t0, 1u? No

• Prediction changes if x2 and x1 can take
any value in t0, 1u? No

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:
• Prediction changes if x1 can take any
value in t0, 1u? No

• Prediction changes if x2 and x1 can take
any value in t0, 1u? No

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Why PI-explanations for DTs?

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Instance: (x1, x2, x3, x4) = (1, 0, 1, 1)

• Why is prediction ‘?
• PI-explanation for prediction ‘ given
instance (x1, x2, x3, x4) = (1, 0, 1, 1)?

• Analysis:
• Prediction changes if x1 can take any
value in t0, 1u? No

• Prediction changes if x2 and x1 can take
any value in t0, 1u? No

• PI-explanation: (x3 = 1)^ (x4 = 1)

• Obs: There are functions for which
some paths grows with number of
features, and PI-explanation is of
constant-size

46 / 106

Need for PI-explanations in DTs is ubiquitous– Russell&Norving’s book

[RN10]

Patrons

No Hungry

No Type

Yes No Fri/Sat

No Yes

Yes

Yes

None Full

No Yes

French

Italian

Thai

No Yes

Burger

Some

• PI-explanation for (P,H, T,W) = (Full, Yes, Thai,No)?

47 / 106

Need for PI-explanations in DTs is ubiquitous– Zhou’s book

[Zho12]is y ą 0.73?

cross is x ą 0.64?

cross circle

Y N

Y N

• PI-explanation for (x, y) = (1.25,´1.13)?

Obs: PI-explanations can be computed for categorical, ordinal, integer or real-valued features !

47 / 106

Need for PI-explanations in DTs is ubiquitous– Alpaydin’s book

[Alp14]x1 ď 2.5?

l is x2 ď 1.0?

l l

Y N

Y N

• PI-explanation for (x1, x2) = (3.14, 0.87)?

Obs: PI-explanations can be computed for categorical, ordinal, integer or real-valued features !

47 / 106

Need for PI-explanations in DTs is ubiquitous– Poole&Mackworth’s book

[PM17]

Length

Skips Thread

Reads Author

Skips Reads

Long Short

New Follow-up

Unknown Known

• PI-explanation for (L, T,A) = (Short, Follow-Up,Unknown)?
• PI-explanation for (L, T,A) = (Short, Follow-Up, Known)?

47 / 106

DT explanations

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction ‘ , it suffices to ensure all

a paths remain inconsistent

• I.e. find a subset-minimal hitting set of
all a paths; these are the features to
keep

• Well-known to be solvable in
polynomial time [EG95]

48 / 106

DT explanations

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time

• For prediction ‘ , it suffices to ensure all
a paths remain inconsistent

• I.e. find a subset-minimal hitting set of
all a paths; these are the features to
keep

• Well-known to be solvable in
polynomial time [EG95]

48 / 106

DT explanations

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction ‘ , it suffices to ensure all

a paths remain inconsistent

• I.e. find a subset-minimal hitting set of
all a paths; these are the features to
keep

• Well-known to be solvable in
polynomial time [EG95]

48 / 106

DT explanations in polynomial time

[IIM20]

x1

x3

a x4

a ‘

x2

x3

a x4

a ‘

‘

0 11

2

4
5

8 9

3

6

10
11

12 13

7

• Run PI-explanation algorithm based on
NP-oracles

• Worst-case exponential time
• For prediction ‘ , it suffices to ensure all

a paths remain inconsistent
• I.e. find a subset-minimal hitting set of
all a paths; these are the features to
keep

• Well-known to be solvable in
polynomial time [EG95]

48 / 106

Experimental evidence

Dataset (#F #S) IAI ITI

D #N %A #P %R %C %m %M %avg D #N %A #P %R %C %m %M %avg
adult (12 6061) 6 83 78 42 33 25 20 40 25 17 509 73 255 75 91 10 66 22
anneal (38 886) 6 29 99 15 26 16 16 33 21 9 31 100 16 25 4 12 20 16
backache (32 180) 4 17 72 9 33 39 25 33 30 3 9 91 5 80 87 50 66 54
bank (19 36 293) 6 113 88 57 5 12 16 20 18 19 1467 86 734 69 64 7 63 27
biodegradation (41 1052) 5 19 65 10 30 1 25 50 33 8 71 76 36 50 8 14 40 21
cancer (9 449) 6 37 87 19 36 9 20 25 21 5 21 84 11 54 10 25 50 37
car (6 1728) 6 43 96 22 86 89 20 80 45 11 57 98 29 65 41 16 50 30
colic (22 357) 6 55 81 28 46 6 16 33 20 4 17 80 9 33 27 25 25 25
compas (11 1155) 6 77 34 39 17 8 16 20 17 15 183 37 92 66 43 12 60 27
contraceptive (9 1425) 6 99 49 50 8 2 20 60 37 17 385 48 193 27 32 12 66 21
dermatology (34 366) 6 33 90 17 23 3 16 33 21 7 17 95 9 22 0 14 20 17
divorce (54 150) 5 15 90 8 50 19 20 33 24 2 5 96 3 33 16 50 50 50
german (21 1000) 6 25 61 13 38 10 20 40 29 10 99 72 50 46 13 12 40 22
heart-c (13 302) 6 43 65 22 36 18 20 33 22 4 15 75 8 87 81 25 50 34
heart-h (13 293) 6 37 59 19 31 4 20 40 24 8 25 77 13 61 60 20 50 32
kr-vs-kp (36 3196) 6 49 96 25 80 75 16 60 33 13 67 99 34 79 43 7 70 35
lending (9 5082) 6 45 73 23 73 80 16 50 25 14 507 65 254 69 80 12 75 25
letter (16 18 668) 6 127 58 64 1 0 20 20 20 46 4857 68 2429 6 7 6 25 9
lymphography (18 148) 6 61 76 31 35 25 16 33 21 6 21 86 11 9 0 16 16 16
mortality (118 13 442) 6 111 74 56 8 14 16 20 17 26 865 76 433 61 61 7 54 19
mushroom (22 8124) 6 39 100 20 80 44 16 33 24 5 23 100 12 50 31 20 40 25
pendigits (16 10 992) 6 121 88 61 0 0 — — — 38 937 85 469 25 86 6 25 11
promoters (58 106) 1 3 90 2 0 0 — — — 3 9 81 5 20 14 33 33 33
recidivism (15 3998) 6 105 61 53 28 22 16 33 18 15 611 51 306 53 38 9 44 16
seismic_bumps (18 2578) 6 37 89 19 42 19 20 33 24 8 39 93 20 60 79 20 60 42
shuttle (9 58 000) 6 63 99 32 28 7 20 33 23 23 159 99 80 33 9 14 50 30
soybean (35 623) 6 63 88 32 9 5 25 25 25 16 71 89 36 22 1 9 12 10
spambase (57 4210) 6 63 75 32 37 12 16 33 19 15 143 91 72 76 98 7 58 25
spect (22 228) 6 45 82 23 60 51 20 50 35 6 15 86 8 87 98 50 83 65
splice (2 3178) 3 7 50 4 0 0 — — — 88 177 55 89 0 0 — — —

49 / 106

Questions on explaining DTs?

50 / 106

Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs

Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

51 / 106

Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

51 / 106

Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

51 / 106

Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

51 / 106

Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

51 / 106

Background & contribution

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

Example
x1, x2 P t0, 1, 2u Instance: a = (2, 0), Literals: (x1 = 2)^ (x2 = 0)

Predict ‘ if: 2x1 ´ x2 ą 1

Predict a if: 2x1 ´ x2 ď 1

Prediction w/ a = (2, 0): ‘

PI-explanation: t(x1 = 2)u, i.e. (x2 = 0) is irrelevant for prediction

Recap PI-explanation: minimal set of literals sufficient for prediction

By default we
consider class ‘

51 / 106

Background & contribution – outline

Classification problems: K = t‘ , au

Features & feature space: F = t1, . . . ,nu, F

Classifiers: NBCs & LCs
Goal: PI-explanations [SCD18, INM19a]

NBCs XLCs Γa,Γω, δ’s
Knapsack
+ Example

51 / 106

Key concepts & outcomes – NBCs & lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK(Pr(c|e))

= argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK(lPr(c|e)) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

52 / 106

Key concepts & outcomes – NBCs & lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK(Pr(c|e)) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK(lPr(c|e)) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

52 / 106

Key concepts & outcomes – NBCs & lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK(Pr(c|e)) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK(lPr(c|e)) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

52 / 106

Key concepts & outcomes – NBCs & lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK(Pr(c|e)) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK(lPr(c|e)) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

52 / 106

Key concepts & outcomes – working with lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

a = (1, 0, 1, 0) Pr(‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r3| ‘) Pr(␣r4| ‘) lPr(‘ |a)
Pr(¨) 0.10 0.95 0.95 0.02 0.80
lPr(¨) 1.70 3.95 3.95 0.09 3.78 13.47

a = (1, 0, 1, 0) Pr(a) Pr(r1| a) Pr(␣r2| a) Pr(r3| a) Pr(␣r4| a) lPr(a |a)
Pr(¨) 0.90 0.03 0.05 0.34 0.25
lPr(¨) 3.89 0.49 1.00 2.92 2.61 10.91

52 / 106

Key concepts & outcomes – working with lPr

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

a = (1, 0, 1, 0) Pr(‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r3| ‘) Pr(␣r4| ‘) lPr(‘ |a)
Pr(¨) 0.10 0.95 0.95 0.02 0.80
lPr(¨) 1.70 3.95 3.95 0.09 3.78 13.47

a = (1, 0, 1, 0) Pr(a) Pr(r1| a) Pr(␣r2| a) Pr(r3| a) Pr(␣r4| a) lPr(a |a)
Pr(¨) 0.90 0.03 0.05 0.34 0.25
lPr(¨) 3.89 0.49 1.00 2.92 2.61 10.91

Pick class ‘ !

52 / 106

Key concepts & outcomes – XLCs

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

XLC classifier: ν(e) fi w0 +
ÿ

iPR
wiei +

ÿ

jPC
σ(ej, v1j , v2j , . . . , v

dj
j)

52 / 106

Key concepts & outcomes – XLCs

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

NBC classifier (def): τ(e) = argmaxcPK (Pr(c)ˆ
ś

i Pr(ei|c))

NBC classifier (alt): τ(e) = argmaxcPK ((T+ logPr(c)) +
ř

i(T+ logPr(ei|c)))

Using oper. lPr(¨): τ(e) = argmaxcPK ((lPr(c)) +
ř

i(lPr(ei|c)))

XLC classifier: ν(e) fi w0 +
ÿ

iPR
wiei +

ÿ

jPC
σ(ej, v1j , v2j , . . . , v

dj
j)

Can reduce
NBC to XLC

52 / 106

Key concepts & outcomes – NBC to XLC

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

Eliminate argmax: lPr(‘)´ lPr(a) +
ÿn

i=1
(lPr(␣ei| ‘)´ lPr(␣ei| a))␣ei +

ÿn

i=1
(lPr(ei| ‘)´ lPr(ei| a))ei ą 0

Mapping to XLC: w0 fi lPr(‘)´ lPr(a)

v1j fi lPr(␣ej| ‘)´ lPr(␣ej| a)

v2j fi lPr(ej| ‘)´ lPr(ej| a)

52 / 106

Key concepts & outcomes – NBC to XLC

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

Eliminate argmax: lPr(‘)´ lPr(a) +
ÿn

i=1
(lPr(␣ei| ‘)´ lPr(␣ei| a))␣ei +

ÿn

i=1
(lPr(ei| ‘)´ lPr(ei| a))ei ą 0

Mapping to XLC: w0 fi lPr(‘)´ lPr(a)

v1j fi lPr(␣ej| ‘)´ lPr(␣ej| a)

v2j fi lPr(ej| ‘)´ lPr(ej| a)

52 / 106

Key concepts & outcomes – example reduction

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

52 / 106

Key concepts & outcomes – minding the gap

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Gap value: Γa fi ν(a) = w0 +
ř

jPC σ(aj, v1j , v2j , . . . , v
dj
i) ą 0

Worst-case gap: Γω fi w0 +
ř

jPC vωj ă 0

Relate Γa and Γω : Γω = w0 +
ř

jPC v
aj
j ´

ř

jPC(v
aj
j ´ v

ω
j) = Γa ´

ř

jPC δj = ´Φ

where, δj fi vajj ´ v
ω
j = vajj ´mintv

1
j , v2j , . . . u

Worst-case, given some min. P : w0 +
ř

jPP v
aj
j +

ř

jRP vωj = ´Φ+
ř

jPP δj ą 0

52 / 106

Key concepts & outcomes – minding the gap

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Gap value: Γa fi ν(a) = w0 +
ř

jPC σ(aj, v1j , v2j , . . . , v
dj
i) ą 0

Worst-case gap: Γω fi w0 +
ř

jPC vωj ă 0

Relate Γa and Γω : Γω = w0 +
ř

jPC v
aj
j ´

ř

jPC(v
aj
j ´ v

ω
j) = Γa ´

ř

jPC δj = ´Φ

where, δj fi vajj ´ v
ω
j = vajj ´mintv

1
j , v2j , . . . u

Worst-case, given some min. P : w0 +
ř

jPP v
aj
j +

ř

jRP vωj = ´Φ+
ř

jPP δj ą 0

52 / 106

Key concepts & outcomes – minding the gap

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Gap value: Γa fi ν(a) = w0 +
ř

jPC σ(aj, v1j , v2j , . . . , v
dj
i) ą 0

Worst-case gap: Γω fi w0 +
ř

jPC vωj ă 0

Relate Γa and Γω : Γω = w0 +
ř

jPC v
aj
j ´

ř

jPC(v
aj
j ´ v

ω
j) = Γa ´

ř

jPC δj = ´Φ

where, δj fi vajj ´ v
ω
j = vajj ´mintv

1
j , v2j , . . . u

Worst-case, given some min. P : w0 +
ř

jPP v
aj
j +

ř

jRP vωj = ´Φ+
ř

jPP δj ą 0

52 / 106

Key concepts & outcomes – minding the gap

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Gap value: Γa fi ν(a) = w0 +
ř

jPC σ(aj, v1j , v2j , . . . , v
dj
i) ą 0

Worst-case gap: Γω fi w0 +
ř

jPC vωj ă 0

Relate Γa and Γω : Γω = w0 +
ř

jPC v
aj
j ´

ř

jPC(v
aj
j ´ v

ω
j) = Γa ´

ř

jPC δj = ´Φ

where, δj fi vajj ´ v
ω
j = vajj ´mintv

1
j , v2j , . . . u

Worst-case, given some min. P : w0 +
ř

jPP v
aj
j +

ř

jRP vωj = ´Φ+
ř

jPP δj ą 0
52 / 106

Key concepts & outcomes – computing δ’s

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

Γa δ1 δ2 δ3 δ4 Φ = ´Γω

2.56 6.43 5.90 0 2.49 12.26

52 / 106

Key concepts & outcomes – computing δ’s

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

Γa δ1 δ2 δ3 δ4 Φ = ´Γω

2.56 6.43 5.90 0 2.49 12.26

52 / 106

Key concepts & outcomes – computing δ’s

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

Γa δ1 δ2 δ3 δ4 Φ = ´Γω

2.56 6.43 5.90 0 2.49 12.26

52 / 106

Key concepts & outcomes – computing δ’s

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

w0 v11 v21 v12 v22 v13 v23 v14 v24
-2.19 -2.97 3.46 2.95 -2.95 0.4 -2.83 1.17 -1.32

Γa δ1 δ2 δ3 δ4 Φ = ´Γω

2.56 6.43 5.90 0 2.49 12.26

52 / 106

Key concepts & outcomes – 0-1 ILP

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Optimization problem:
min

řn
i=1 pi

s.t.
řn
i=1 δipi ą Φ

pi P t0, 1u

52 / 106

Key concepts & outcomes – 0-1 ILP

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Optimization problem:
min

řn
i=1 pi

s.t.
řn
i=1 δipi ą Φ

pi P t0, 1u
Special case of knapsack;
can solve in log-linear time

52 / 106

Key concepts & outcomes – 0-1 ILP

Pr(‘) Pr(␣r1| ‘) Pr(r1| ‘) Pr(␣r2| ‘) Pr(r2| ‘) Pr(␣r3| ‘) Pr(r3| ‘) Pr(␣r4| ‘) Pr(r4| ‘)

Pr(¨) 0.10 0.05 0.95 0.95 0.05 0.98 0.02 0.80 0.20
lPr(¨) 1.70 1.00 3.95 3.95 1.00 3.98 0.09 3.78 2.39

Pr(a) Pr(␣r1| a) Pr(r1| a) Pr(␣r2| a) Pr(r2| a) Pr(␣r3| a) Pr(r3| a) Pr(␣r4| a) Pr(r4| a)

Pr(¨) 0.90 0.97 0.03 0.05 0.95 0.66 0.34 0.25 0.75
lPr(¨) 3.89 3.97 0.49 1.00 3.95 3.58 2.92 2.61 3.71

Optimization problem:
min

řn
i=1 pi

s.t.
řn
i=1 δipi ą Φ

pi P t0, 1u
Special case of knapsack;
can solve in log-linear time

Can enumerate min. sols
w/ log-linear delay

52 / 106

Key concepts & outcomes – finding one PI-explanation

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

δ1 δ2 δ4 δ3

Sorted 6.43 5.90 2.49 0 Φ = 12.26

Sum

6.43 12.33 – –

0

52 / 106

Key concepts & outcomes – finding one PI-explanation

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

δ1 δ2 δ4 δ3

Sorted 6.43 5.90 2.49 0 Φ = 12.26

Sum 6.43

12.33 – –

6.43

52 / 106

Key concepts & outcomes – finding one PI-explanation

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

δ1 δ2 δ4 δ3

Sorted 6.43 5.90 2.49 0 Φ = 12.26

Sum 6.43 12.33

– –

12.33 ą Φ !

52 / 106

Key concepts & outcomes – finding one PI-explanation

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

δ1 δ2 δ4 δ3

Sorted 6.43 5.90 2.49 0 Φ = 12.26

Sum 6.43 12.33 – – 12.33 ą Φ !

52 / 106

Key concepts & outcomes – finding one PI-explanation

G

R2 R3R1 R4

G Pr(G)
a 0.90

G Pr(R1|G)
‘ 0.95
a 0.03

G Pr(R2|G)
‘ 0.05
a 0.95

G Pr(R3|G)
‘ 0.02
a 0.34

G Pr(R4|G)
‘ 0.20
a 0.75

δ1 δ2 δ4 δ3

Sorted 6.43 5.90 2.49 0 Φ = 12.26

Sum 6.43 12.33 – – 12.33 ą Φ !

PI-explanation:
(p1 = 1)^ (p2 = 1)

i.e. (e1 = 1)^ (e2 = 0)

52 / 106

Overview of experimental results

0 20000 40000 60000 80000
instances

10−2

10−1

100

101

C
PU

tim
e

(s
)

(a) Raw performance of XPXLC

2s 10
s

10
0s

72
00

s
M

O TO
0

2

4

6

8

10

12

14

16

18

20

in
st

an
ce

s

(b) Performance of STEP (with MOs & TOs)

10−2 10−1 100 101

XPXLC

10−2

10−1

100

101

ST
E

P

(c) XPXLC vs STEP (no comp. time)

Our work (XPXLC) vs. STEP [SCD18, DH20]

53 / 106

Questions on explaining NBCs & XLCs?

54 / 106

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

55 / 106

Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?

• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

56 / 106

Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?

• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

56 / 106

Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?

• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

56 / 106

Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?
• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

56 / 106

Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?
• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

56 / 106

Overview

[INM19b]

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?
• Recent work observed that some connection existed, but formal connection has been elusive

• We proposed a (first) link between XPs and AEs [INM19b]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]

56 / 106

A well-known example

[RN10]

Example Input Attributes Goal
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes
x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No
x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes
x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No
x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes
x7 No Yes No No None $ Yes No Burger 0–10 y7 = No
x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes
x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No
x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No
x11 No No No No None $ No No Thai 0–10 y11 = No
x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes

57 / 106

A well-known example (Cont.)

• 10 features:

tA(lternate),B(ar),W(eekend),H(ungry),Pa(trons),Pr(ice),Ra(in),Re(serv.), T(ype), E(stim.)u

• Example instance (x1, with outcome y1 = Yes):

tA,␣B,␣W,H, (Pa = Some), (Pr = $$$),␣Ra,Re, (T = French), (E = 0–10)u

• A possible decision set (obtained with some off-the-shelf tool):

IF (Pa = Some)^␣(E = ą60) THEN (Wait = Yes) (R1)
IF W^␣(Pr = $$$)^␣(E = ą60) THEN (Wait = Yes) (R2)

IF ␣W^␣(Pa = Some) THEN (Wait = No) (R3)
IF (E = ą60) THEN (Wait = No) (R4)
IF ␣(Pa = Some)^ (Pr = $$$) THEN (Wait = No) (R5)

58 / 106

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa

59 / 106

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa

59 / 106

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa

59 / 106

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa

59 / 106

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa

59 / 106

Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C((MÑ ρ),
with ρ P K^ ρ ­= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some)^␣(E = ą60)

• Due to (R5), a counterexample is:

␣(Pa = Some)^ (Pr = $$$)

• XP S1 = t(Pa = Some),␣(E = ą60)u breaks CEx S2 = t␣(Pa = Some), (Pr = $$$)u and
vice-versa

59 / 106

Some preliminary results

1. Relationship between XPs with CEx’s:

• Each XP breaks every CEx

• Each CEx breaks every XP

6 XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

60 / 106

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

6 XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

60 / 106

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

6 XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

60 / 106

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

6 XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

60 / 106

Some preliminary results

1. Relationship between XPs with CEx’s:
• Each XP breaks every CEx

• Each CEx breaks every XP

6 XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx

60 / 106

Revisiting the example

• Restaurant dataset
• ML model is decision set (shown earlier)
• Prediction is (Wait = Yes)

• Global explanations:
1. (Pa = Some)^␣(E = ą60)
2. W^␣(Pr = $$$)^␣(E = ą60)

• Counterexamples:
1. ␣W^␣(Pa = Some)
2. (E = ą60)
3. ␣(Pa = Some)^ (Pr = $$$)

• The XP’s break the CEx’s and vice-versa

61 / 106

Questions for part 2?

62 / 106

Part 3

Fairness

Outline

Understanding fairness

Fairness Through Unawareness

Relating Fairness with Explanations

Learning Fair Models

63 / 106

Some questions regarding fairness

[ICS+20]

• What should be the criterion for fairness of a model (a classifier)?

• What should be the criterion for dataset bias?

• What should be the criterion for fairness of a particular decision?

• How to learn a fair model from biased data?

64 / 106

Basic definitions

• Classifier: boolean function φ(x, y) P t0, 1u, where
• x: values of non-protected features (salary, age, ...), and
• y: values of protected features (gender, race, ...).

• Dataset: set of tuples xx, y, cy with c P t0, 1u

• Examples:
1. Should a bank approve a loan to a customer?
2. Should a judge release a prisoner on probation?

65 / 106

Outline

Understanding fairness

Fairness Through Unawareness

Relating Fairness with Explanations

Learning Fair Models

66 / 106

Criterion: fairness through unawareness (FTU)

• FTU: φ is a function only of the non-protected features x

• FTU criterion for testing unfairness of model:

Dx D(y1, y2). [y1 ‰ y2 ^ φ(x, y1) ‰ φ(x, y2)]

E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn’t

• Optimisation: only need to test criterion for y1, y2 which differ on a single feature

Possible drawbacks of FTU:
• There may be correlations between protected and non-protected features

E.g.: the bank isn’t unfair to women, they just don’t give loans to people who are pregnant!
• Positive discrimination may be a good thing

E.g.: height restrictions for army recruits are less strict for women

67 / 106

Criterion: fairness through unawareness (FTU)

• FTU: φ is a function only of the non-protected features x

• FTU criterion for testing unfairness of model:

Dx D(y1, y2). [y1 ‰ y2 ^ φ(x, y1) ‰ φ(x, y2)]

E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn’t

• Optimisation: only need to test criterion for y1, y2 which differ on a single feature

Possible drawbacks of FTU:
• There may be correlations between protected and non-protected features

E.g.: the bank isn’t unfair to women, they just don’t give loans to people who are pregnant!
• Positive discrimination may be a good thing

E.g.: height restrictions for army recruits are less strict for women

67 / 106

FTU as a criterion for dataset bias

• FTU criterion for testing bias of a dataset D:

Dx, y1, y2.[y1 ‰ y2 ^ xx, y1, 0y, xx, y2, 1y P D]

• Criterion can be applied even if D is inconsistent (i.e. Dx, y[xx, y, 0y, xx, y, 1y P D])
• Criterion can be tested in linear time (using hash tables) since it is equivalent to: Dx such that

|tc : Dy, xx, y, cy P Du| ą 1

|ty : Dc, xx, y, c|y P Du| ą 1

68 / 106

Which criterion to pick?

• Axioms for a dataset-bias criterion:
• Coding-independence: independent of renaming or merging of non-protected
features/protected features

• Monotonicity: eliminating unprotected features cannot reduce bias
• Not arbitrary: if all data is identical on the protected features, then unbiased
• Discerning: the criterion is non-trivial
• Simplicity: bias can be proved by exhibiting just 2 examples

Theorem
The only criterion satisfying these 5 axioms is FTU

Theorem
There is no criterion which satisfies the 5 axioms and is invariant to the addition of irrelevant
features (such as month of birth)

69 / 106

Outline

Understanding fairness

Fairness Through Unawareness

Relating Fairness with Explanations

Learning Fair Models

70 / 106

Local fairness: fairness of a particular decision

• An example:

• Emma wants to know if she was refused a loan because she is a woman

• The bank uses a simple model: refuse a loan if the client is unemployed or if they are a
woman

• This model is clearly unfair with respect to gender, but

• The bank claims that the decision is fair since they refused the loan because Emma is unemployed
• Emma points out there are two possible explanations for the refusal:
(1) she is unemployed, or that
(2) she is a woman,
and hence the decision should be considered unfair

• Who is right?

71 / 106

Local fairness: fairness of a particular decision

• An example:

• Emma wants to know if she was refused a loan because she is a woman

• The bank uses a simple model: refuse a loan if the client is unemployed or if they are a
woman

• This model is clearly unfair with respect to gender, but

• The bank claims that the decision is fair since they refused the loan because Emma is unemployed
• Emma points out there are two possible explanations for the refusal:
(1) she is unemployed, or that
(2) she is a woman,
and hence the decision should be considered unfair

• Who is right?

71 / 106

Fairness of a particular decision from explanations

• Recap: a PI-explanation E of a prediction φ(z) = c is a subset-minimal set of literals from
the literals Z of z P F, which entails the prediction c:

@(x P F). [E(x)Ñ(φ(x) = c)]

• E.g. with φ(x, y) = x^ y, the decision φ(0, 0) = 0 has 2 PI-explanations: E1 = (␣x), and
E2 = (␣y)

• An explanation is fair if it includes no protected features
• A prediction φ(z) = c is:

• Universally fair: if all of its explanations are fair
• Existentially fair: if at least one of its explanations is fair

• Back to the example:
Emma’s loan refusal decision is existentially fair but not universally fair

72 / 106

Fairness of a particular decision from explanations

• Recap: a PI-explanation E of a prediction φ(z) = c is a subset-minimal set of literals from
the literals Z of z P F, which entails the prediction c:

@(x P F). [E(x)Ñ(φ(x) = c)]

• E.g. with φ(x, y) = x^ y, the decision φ(0, 0) = 0 has 2 PI-explanations: E1 = (␣x), and
E2 = (␣y)

• An explanation is fair if it includes no protected features
• A prediction φ(z) = c is:

• Universally fair: if all of its explanations are fair
• Existentially fair: if at least one of its explanations is fair

• Back to the example:
Emma’s loan refusal decision is existentially fair but not universally fair

72 / 106

Complexity of checking fairness

• A model φ is fair iff all its decisions are universally fair
• Checking fairness of a model is in co-NP

• Checking existential fairness of a decision φ(z) = c is in co-NP
• It can be solved by exhaustive search over only the protected features

• Checking universal fairness of a decision φ(z) = c is in ΠP
2

73 / 106

Outline

Understanding fairness

Fairness Through Unawareness

Relating Fairness with Explanations

Learning Fair Models

74 / 106

Learning fair models (from a possibly biased dataset)

Principle: we impose fairness
• Obs: this is necessarily at the cost of accuracy in the case of a biased dataset

Majority-vote solution: since φ(x, y) must be a function of x only, we maximise accuracy
by choosing the most common class c as y varies and x remains fixed

Obs: We may further sacrifice accuracy in order to obtain a simple (and hence more
human-understandable) model

75 / 106

Fair decision sets with SAT

Problem: learn a boolean function φ(x1, . . . , xm) from a set of n examples
• The model φ is necessarily fair since it is a function of non-protected features x1, . . . , xm only

• In order to obtain a human-understandable model φ, we construct (multiple) K-term
DNFs, where K is a small constant

• We can encode this problem as a SAT instance with variables:
• pjk = 1 if the kth term contains xj
• qjk = 1 if the kth term contains ␣xj
• vik = 1 if the ith example satisfies the kth term

76 / 106

Fair decision sets with SAT

• Clauses of the SAT instance (for 1 DNF):
1. Each positive example satisfies some term (O(n) size-K clauses)
2. No negative example satisfies any term (O(nK) size-m clauses)
3. Constraints coding the semantics of the variables (O(nmK) binary clauses)

where n = number of examples, m = number of features, K = number of terms in the DNF

77 / 106

Example of the Compas dataset

• Dataset is derived from the COMPAS algorithm used for scoring a criminal defendant’s
likelihood of reoffending

• It includes protected features, such as African American, etc.
• Dataset is so biased that the maximum feasible accuracy is only 69.73%
• By sacrificing accuracy further to obtain a more interpretable (i.e. smaller) model, we found the
following decision set which has 66.32% accuracy and is fair:

IF #Priors ą 17.5^␣score_factor THEN Two_yr_Recidivism
IF #Priors ą 17.5^ Age ą 45^ Misdemeanor THEN Two_yr_Recidivism
IF #Priors ď 17.5 THEN ␣Two_yr_Recidivism
IF score_factor^ Age ď 45 THEN ␣Two_yr_Recidivism
IF score_factor^␣Misdemeanor THEN ␣Two_yr_Recidivism

78 / 106

Questions for part 3?

79 / 106

Part 4

Learning (Interpretable Models)

Outline

Learning Decision Sets

Learning Decision Trees – Glimpse

80 / 106

Classification problems I

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples/instances): E = te1, . . . , eMu

• Binary features: F = tf1, . . . , fKu
• Literals: fr and ␣fr

• Feature space: U fi
śK

r=1tfr,␣fru

• Binary classification: C = tc0 = 0, c1 = 1u

• E partitioned into E´ and E+

81 / 106

Classification problems I

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples/instances): E = te1, . . . , eMu

• Binary features: F = tf1, . . . , fKu
• Literals: fr and ␣fr

• Feature space: U fi
śK

r=1tfr,␣fru

• Binary classification: C = tc0 = 0, c1 = 1u

• E partitioned into E´ and E+

81 / 106

Classification problems I

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples/instances): E = te1, . . . , eMu

• Binary features: F = tf1, . . . , fKu
• Literals: fr and ␣fr

• Feature space: U fi
śK

r=1tfr,␣fru

• Binary classification: C = tc0 = 0, c1 = 1u

• E partitioned into E´ and E+

81 / 106

Classification problems I

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples/instances): E = te1, . . . , eMu

• Binary features: F = tf1, . . . , fKu
• Literals: fr and ␣fr

• Feature space: U fi
śK

r=1tfr,␣fru

• Binary classification: C = tc0 = 0, c1 = 1u

• E partitioned into E´ and E+

81 / 106

Classification problems II

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• eq P E represented as a 2-tuple (πq, ςq)

• πq P U : literals associated with the example
• ςq P t0, 1u is the class of example

• A literal lr on a feature fr, lr P tfr,␣fru, discriminates an example eq if πq[r] = ␣lr
• I.e. feature r takes the value opposite to the value in the tuple of literals of the example

82 / 106

Classification problems II

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• eq P E represented as a 2-tuple (πq, ςq)

• πq P U : literals associated with the example
• ςq P t0, 1u is the class of example

• A literal lr on a feature fr, lr P tfr,␣fru, discriminates an example eq if πq[r] = ␣lr
• I.e. feature r takes the value opposite to the value in the tuple of literals of the example

82 / 106

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Binary features: F = tf1, f2, f3, f4u
• f1 fi V, f2 fi C, f3 fi M, and f4 fi E

• e1 is represented by the 2-tuple (π1, ς1),
• π1 = (␣V,␣C,M,␣E)
• ς1 = 0

• Literals V, C, ␣M and E discriminate e1

• U = tV,␣Vu ˆ tC,␣Cu ˆ tM,␣Mu ˆ tE,␣Eu

83 / 106

Goal of explainable classification – our take

[IPNM18]

Given training data, learn set of DNFs that correctly classify that data, perform
suitably well on unseen data, and offer human-understandable explanations for
the predictions made

84 / 106

Itemsets & decision sets

• Given F , an itemset π is an element of I fi
śK

r=1tfr,␣fr, uu
• u represents a don’t care value

• A rule is a 2-tuple (π, ς), with itemset π P I , and class ς P C
Rule (π, ς) interpreted as:
IF all specified literals in π are true, THEN pick class ς

• A decision set S is a finite set of rules – unordered

• A rule of the form D fi (H, ς) denotes the default rule of a decision set S
• Default rule is optional and used only when other rules do not apply on some feature space
point

85 / 106

Itemsets & decision sets

• Given F , an itemset π is an element of I fi
śK

r=1tfr,␣fr, uu
• u represents a don’t care value

• A rule is a 2-tuple (π, ς), with itemset π P I , and class ς P C
Rule (π, ς) interpreted as:
IF all specified literals in π are true, THEN pick class ς

• A decision set S is a finite set of rules – unordered

• A rule of the form D fi (H, ς) denotes the default rule of a decision set S
• Default rule is optional and used only when other rules do not apply on some feature space
point

85 / 106

Itemsets & decision sets

• Given F , an itemset π is an element of I fi
śK

r=1tfr,␣fr, uu
• u represents a don’t care value

• A rule is a 2-tuple (π, ς), with itemset π P I , and class ς P C
Rule (π, ς) interpreted as:
IF all specified literals in π are true, THEN pick class ς

• A decision set S is a finite set of rules – unordered

• A rule of the form D fi (H, ς) denotes the default rule of a decision set S
• Default rule is optional and used only when other rules do not apply on some feature space
point

85 / 106

Itemsets & decision sets

• Given F , an itemset π is an element of I fi
śK

r=1tfr,␣fr, uu
• u represents a don’t care value

• A rule is a 2-tuple (π, ς), with itemset π P I , and class ς P C
Rule (π, ς) interpreted as:
IF all specified literals in π are true, THEN pick class ς

• A decision set S is a finite set of rules – unordered

• A rule of the form D fi (H, ς) denotes the default rule of a decision set S
• Default rule is optional and used only when other rules do not apply on some feature space
point

85 / 106

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Rule 1: ((u, u,␣M, u), c1)
• Meaning: if ␣Meeting then Hike

• Rule 2: ((␣V, u, u, u), c0)
• Meaning: if ␣Vacation then ␣Hike

• Default rule: (H, c0)
• Meaning: if all other rules do not apply, then pick ␣Hike

86 / 106

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Rule 1: ((u, u,␣M, u), c1)
• Meaning: if ␣Meeting then Hike

• Rule 2: ((␣V, u, u, u), c0)
• Meaning: if ␣Vacation then ␣Hike

• Default rule: (H, c0)
• Meaning: if all other rules do not apply, then pick ␣Hike

86 / 106

Issue with unordered rules

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

87 / 106

Issue with unordered rules – overlap

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

87 / 106

Issue with unordered rules – overlap

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

87 / 106

Issue with unordered rules – overlap

• Itemsets π1, π2 P I clash, π1 X π2 =H, if for some coordinate r:
• π1[r] = fr and π2[r] = ␣fr, or π1[r] = ␣fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 X π2 ­=H

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ‘: overall where rules agree in prediction
• a: overlap where rules disagree in prediction

• Our goal:

Minimize number of rules in decision set, and provide guarantees in terms of
overlap, namely a-overlap

87 / 106

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Decision set:
t((␣V, u, u, u), c0), ((u, u,␣M, u), c1)u

• No Ea-overlap

• But, there exists overlap in feature space
• a-overlap for (␣V,␣C,␣M,␣E) P UzE

• However, there exists no Ua-overlap for decision set:
t((V, u, u, u), c1), ((␣V, u, u, u), c0)u

88 / 106

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Decision set:
t((␣V, u, u, u), c0), ((u, u,␣M, u), c1)u

• No Ea-overlap
• But, there exists overlap in feature space

• a-overlap for (␣V,␣C,␣M,␣E) P UzE

• However, there exists no Ua-overlap for decision set:
t((V, u, u, u), c1), ((␣V, u, u, u), c0)u

88 / 106

Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Decision set:
t((␣V, u, u, u), c0), ((u, u,␣M, u), c1)u

• No Ea-overlap
• But, there exists overlap in feature space

• a-overlap for (␣V,␣C,␣M,␣E) P UzE

• However, there exists no Ua-overlap for decision set:
t((V, u, u, u), c1), ((␣V, u, u, u), c0)u

88 / 106

Succinct explanations

• If a rule fires, the set of literals represents the explanation for the predicted class
• Explanation is succinct : only the literals in the rule used; independent of example

• For the default class, must pick one falsified literal in every rule that predicts a different
class

• Explanation is not succinct : explanation depends on each example

• Obs: Uninteresting to predict c1 as negation of c0 (and vice-versa)
• Explanations also not succinct

89 / 106

Stating our goals

• Assumptions:
• Represent E´ with Boolean function E0

• True for each example E´

• Represent E+ with Boolean function E1

• True for each example E+

• Also, let E0 ^ E1(K

• DNF functions to compute:
• F0 for predicting c0, while ensuring E0(F0

• F1 for predicting c1, while ensuring E1(F1

90 / 106

Stating our goals

• Assumptions:
• Represent E´ with Boolean function E0

• True for each example E´

• Represent E+ with Boolean function E1

• True for each example E+

• Also, let E0 ^ E1(K

• DNF functions to compute:
• F0 for predicting c0, while ensuring E0(F0

• F1 for predicting c1, while ensuring E1(F1

F r

90 / 106

An ideal model – MinDS0

• MinDS0:
Find the smallest DNF representations of Boolean functions F0 and F1, measured in the
number of terms, such that:
1. E0(F0
2. E1(F1
3. F1Ø F0(K

• No Ua-overlap

• Obs: MinDS0 ensures succinct explanations
• Computes F0 and F1 (i.e. no negation) and no default rule

• Complexity-wise:
• MinDS0 P ΣP

2

• A conjecture: MinDS0 hard for ΣP
2 (from late 2017)

91 / 106

An ideal model – MinDS0

• MinDS0:
Find the smallest DNF representations of Boolean functions F0 and F1, measured in the
number of terms, such that:
1. E0(F0
2. E1(F1
3. F1Ø F0(K

• No Ua-overlap

• Obs: MinDS0 ensures succinct explanations
• Computes F0 and F1 (i.e. no negation) and no default rule

• Complexity-wise:
• MinDS0 P ΣP

2

• A conjecture: MinDS0 hard for ΣP
2 (from late 2017)

91 / 106

An ideal model – MinDS0

• MinDS0:
Find the smallest DNF representations of Boolean functions F0 and F1, measured in the
number of terms, such that:
1. E0(F0
2. E1(F1
3. F1Ø F0(K

• No Ua-overlap

• Obs: MinDS0 ensures succinct explanations
• Computes F0 and F1 (i.e. no negation) and no default rule

• Complexity-wise:
• MinDS0 P ΣP

2

• A conjecture: MinDS0 hard for ΣP
2 (from late 2017)

91 / 106

Curbing our expectations I

• MinDS4: Minimize F0, given F1 ” E1 constant, and such that
1. E0(F0

2. F0 ^ E1(K
• No a-overlap;
• No succinct explanations for F1

• MinDS3: Same as MinDS4, but target F1 given F0 ” E0 constant
• Also, no a-overlap;
• No succinct explanations for F0

• MinDS2: Minimize both F0 and F1, such that
1. E0(F0

2. E1(F1

3. F0 ^ E1(K
4. F1 ^ E0(K
• Also, no Ea-overlap; but (UzE)a-overlap may exist
• All explanations succinct

92 / 106

Curbing our expectations I

• MinDS4: Minimize F0, given F1 ” E1 constant, and such that
1. E0(F0

2. F0 ^ E1(K
• No a-overlap;
• No succinct explanations for F1

• MinDS3: Same as MinDS4, but target F1 given F0 ” E0 constant
• Also, no a-overlap;
• No succinct explanations for F0

• MinDS2: Minimize both F0 and F1, such that
1. E0(F0

2. E1(F1

3. F0 ^ E1(K
4. F1 ^ E0(K
• Also, no Ea-overlap; but (UzE)a-overlap may exist
• All explanations succinct

92 / 106

Curbing our expectations I

• MinDS4: Minimize F0, given F1 ” E1 constant, and such that
1. E0(F0

2. F0 ^ E1(K
• No a-overlap;
• No succinct explanations for F1

• MinDS3: Same as MinDS4, but target F1 given F0 ” E0 constant
• Also, no a-overlap;
• No succinct explanations for F0

• MinDS2: Minimize both F0 and F1, such that
1. E0(F0

2. E1(F1

3. F0 ^ E1(K
4. F1 ^ E0(K
• Also, no Ea-overlap; but (UzE)a-overlap may exist
• All explanations succinct

92 / 106

Curbing our expectations II

• MinDS1: Minimize both F0 and F1, such that
1. E0(F0

2. E1(F1

3. F1 ^ F0(K

• No Ua-overlap
• Default rule may be required for points in UzE
• And, default rule explanations not succinct

• Complexity-wise:
• Decision formulations of MinDS1, MinDS2, MinDS3, MinDS4 are complete for NP

• In principle, could be solved with MaxSAT
• But no closed MaxSAT models for now

93 / 106

Curbing our expectations II

• MinDS1: Minimize both F0 and F1, such that
1. E0(F0

2. E1(F1

3. F1 ^ F0(K

• No Ua-overlap
• Default rule may be required for points in UzE
• And, default rule explanations not succinct

• Complexity-wise:
• Decision formulations of MinDS1, MinDS2, MinDS3, MinDS4 are complete for NP

• In principle, could be solved with MaxSAT
• But no closed MaxSAT models for now

93 / 106

Computing explainable decision sets

• Our work: [IPNM18]

• Adapted old SAT encodings to MinDS3 & MinDS4 [KKRR’92]

• Developed new SAT encodings for MinDS3 & MinDS4

• Developed SAT encodings for MinDS2 and MinDS1

• Proposed symmetry-breaking constraints (SBPs)

• Covered in the lecture: SAT encoding for MinDS3

94 / 106

Computing explainable decision sets

• Our work: [IPNM18]

• Adapted old SAT encodings to MinDS3 & MinDS4 [KKRR’92]

• Developed new SAT encodings for MinDS3 & MinDS4

• Developed SAT encodings for MinDS2 and MinDS1

• Proposed symmetry-breaking constraints (SBPs)

• Covered in the lecture: SAT encoding for MinDS3

94 / 106

SAT model for MinDS3 – overview

• DNF representation for F1

• Consider N terms
• Each term corresponds to a rule

F r

• Allow literals to be associated or not with each rule

• Rules for some class must discriminate examples of other classes

• Every example must be covered by one of the rules for its class

95 / 106

Boolean variables for MinDS3

F r

• sjr: whether a literal in feature r is skipped for rule j

• ljr polarity of literal on feature r for rule j, when the feature is not skipped

• d0jr: whether feature r of rule j discriminates value 0

• d1jr: whether feature r of rule j discriminates value 1

• crjq: whether (used) rule j covers eq P E+

96 / 106

Constraints for MinDS3 I

• Each term must have some literals:(K
Ž

r=1
␣sjr

)
j P [N]

• Account for which literals are discriminated by which rules:

d0jrØ␣sjr ^ ljr j P [N]^ r P [K]

d1jrØ␣sjr ^␣ljr j P [N]^ r P [K]

• Discriminate all the negative examples in each term
• eq P E´: some negative example
• σ(r, q): sign of feature fr for eq(K

Ž

r=1
dσ(r,q)j,r

)
j P [N]^ eq P E´

97 / 106

Constraints for MinDS3 I

• Each term must have some literals:(K
Ž

r=1
␣sjr

)
j P [N]

• Account for which literals are discriminated by which rules:

d0jrØ␣sjr ^ ljr j P [N]^ r P [K]

d1jrØ␣sjr ^␣ljr j P [N]^ r P [K]

• Discriminate all the negative examples in each term
• eq P E´: some negative example
• σ(r, q): sign of feature fr for eq(K

Ž

r=1
dσ(r,q)j,r

)
j P [N]^ eq P E´

97 / 106

Constraints for MinDS3 I

• Each term must have some literals:(K
Ž

r=1
␣sjr

)
j P [N]

• Account for which literals are discriminated by which rules:

d0jrØ␣sjr ^ ljr j P [N]^ r P [K]

d1jrØ␣sjr ^␣ljr j P [N]^ r P [K]

• Discriminate all the negative examples in each term
• eq P E´: some negative example
• σ(r, q): sign of feature fr for eq(K

Ž

r=1
dσ(r,q)j,r

)
j P [N]^ eq P E´

97 / 106

Constraints for MinDS3 II

• Each positive example must be covered by some rule
• Define whether a rule covers some specific positive example:

crjqØ
(K

Ź

r=1

␣dσ(r,q)
j,r

)
j P [N]^ eq P E+

• And, each eq P E+ must be covered by some rule:(
N

Ž

j=1

crjq

)
eq P E+

• The model uses O(NˆMˆ K) clauses and literals

98 / 106

Constraints for MinDS3 II

• Each positive example must be covered by some rule
• Define whether a rule covers some specific positive example:

crjqØ
(K

Ź

r=1

␣dσ(r,q)
j,r

)
j P [N]^ eq P E+

• And, each eq P E+ must be covered by some rule:(
N

Ž

j=1

crjq

)
eq P E+

• The model uses O(NˆMˆ K) clauses and literals

98 / 106

Constraints for MinDS3 II

• Each positive example must be covered by some rule
• Define whether a rule covers some specific positive example:

crjqØ
(K

Ź

r=1

␣dσ(r,q)
j,r

)
j P [N]^ eq P E+

• And, each eq P E+ must be covered by some rule:(
N

Ž

j=1

crjq

)
eq P E+

• The model uses O(NˆMˆ K) clauses and literals

98 / 106

Experimental setup & initial results

• 49 datasets from the PMLB repository
• Assessment of MinDS1, MinDS2 and MP92, w/ and w/o SBPs [IPNM18]

• A basic model MP92 developed in the 90s [KKRR92]

• We devised SBPs for the MinDS and the MP92 models
• Comparison with (state of the art) IDS [LBL16]

• Heuristic approach, using smooth local search
• Default settings & additional settings

• All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

• Timeout of 600s and memout of 10GB

• There are recent improvements [YISB20]

99 / 106

Experimental setup & initial results

• 49 datasets from the PMLB repository
• Assessment of MinDS1, MinDS2 and MP92, w/ and w/o SBPs [IPNM18]

• A basic model MP92 developed in the 90s [KKRR92]

• We devised SBPs for the MinDS and the MP92 models
• Comparison with (state of the art) IDS [LBL16]

• Heuristic approach, using smooth local search
• Default settings & additional settings

• All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

• Timeout of 600s and memout of 10GB

MP92 MP92+SBP MinDS2 MinDS2+SBP MinDS1 MinDS1+SBP IDS-supp0.2 IDS-supp0.5

42 45 42 45 6 6 0 2

• There are recent improvements [YISB20]

99 / 106

Experimental setup & initial results

• 49 datasets from the PMLB repository
• Assessment of MinDS1, MinDS2 and MP92, w/ and w/o SBPs [IPNM18]

• A basic model MP92 developed in the 90s [KKRR92]

• We devised SBPs for the MinDS and the MP92 models
• Comparison with (state of the art) IDS [LBL16]

• Heuristic approach, using smooth local search
• Default settings & additional settings

• All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

• Timeout of 600s and memout of 10GB

MP92 MP92+SBP MinDS2 MinDS2+SBP MinDS1 MinDS1+SBP IDS-supp0.2 IDS-supp0.5

42 45 42 45 6 6 0 2

• There are recent improvements [YISB20]

99 / 106

Outline

Learning Decision Sets

Learning Decision Trees – Glimpse

100 / 106

Propositional encodings for DTs

• Proposed tight encoding for computing smallest decision tree [NIPM18]

• Encoding also serves to pick the structure of the binary tree

• Encoding much tighter (and more general) than earlier work [BHO09]

SAT Weather Mouse Cancer Car Income
DT2˚ 27K 3.5M 92G 842M 354G
DT1 190K 1.2M 5.2M 4.1M 1.2G

• Several recent alternative proposals [ANS20b, VNP+20, HSHH20, JM20, ANS20a, Ave20, HRS19, VZ19]

• Several approaches outperform our work

101 / 106

Questions for part 4?

102 / 106

Part 5

(Comments on) Robustness

Validating robustness in NNs

[HKWW17, KBD+17, SGM+18, KHI+19]

• Goal: prove properties of ML models
• Some target objective is satisfied
• Some bad state is not reached
• Small-distance adversarial examples are not observed

• Tradeoffs: soundness vs. completeness vs. both

• Example approach: [KBD+17, KHI+19]

• Logic/constraint-based encoding of ML models
• Dedicated engine to reason about NNs: Reluplex

103 / 106

Validating robustness in NNs

[HKWW17, KBD+17, SGM+18, KHI+19]

• Goal: prove properties of ML models
• Some target objective is satisfied
• Some bad state is not reached
• Small-distance adversarial examples are not observed

• Tradeoffs: soundness vs. completeness vs. both

• Example approach: [KBD+17, KHI+19]

• Logic/constraint-based encoding of ML models
• Dedicated engine to reason about NNs: Reluplex

103 / 106

Validating robustness in NNs

[HKWW17, KBD+17, SGM+18, KHI+19]

• Goal: prove properties of ML models
• Some target objective is satisfied
• Some bad state is not reached
• Small-distance adversarial examples are not observed

• Tradeoffs: soundness vs. completeness vs. both

• Example approach: [KBD+17, KHI+19]

• Logic/constraint-based encoding of ML models
• Dedicated engine to reason about NNs: Reluplex

103 / 106

Conclusions

• Overview of (our) work at intersection of AR & ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness

• Work offers (often viable) alternative to heuristic-based solutions
• Fascinating range of research topics
• Exploiting formal methods in offering much-needed rigor to the emerging field of ML

• Many challenges lie ahead:
• Scalability, scalability, ... (often a perception, but ...)
• Adoption, adoption, ... (evidence suggests no alternative, but ...)

• Our remit@ ANITI:

To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques

104 / 106

Conclusions

• Overview of (our) work at intersection of AR & ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness

• Work offers (often viable) alternative to heuristic-based solutions
• Fascinating range of research topics
• Exploiting formal methods in offering much-needed rigor to the emerging field of ML

• Many challenges lie ahead:
• Scalability, scalability, ... (often a perception, but ...)
• Adoption, adoption, ... (evidence suggests no alternative, but ...)

• Our remit@ ANITI:

To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques

104 / 106

Conclusions

• Overview of (our) work at intersection of AR & ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness

• Work offers (often viable) alternative to heuristic-based solutions
• Fascinating range of research topics
• Exploiting formal methods in offering much-needed rigor to the emerging field of ML

• Many challenges lie ahead:
• Scalability, scalability, ... (often a perception, but ...)
• Adoption, adoption, ... (evidence suggests no alternative, but ...)

• Our remit@ ANITI:

To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques

104 / 106

Conclusions

• Overview of (our) work at intersection of AR & ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness

• Work offers (often viable) alternative to heuristic-based solutions
• Fascinating range of research topics
• Exploiting formal methods in offering much-needed rigor to the emerging field of ML

• Many challenges lie ahead:
• Scalability, scalability, ... (often a perception, but ...)
• Adoption, adoption, ... (evidence suggests no alternative, but ...)

• Our remit@ ANITI:

To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques
104 / 106

Questions?

Acknowledgment: joint work with M. Cooper, T. Gerspacher, E. Hebrard,
A. Ignatiev, I. Izza, N. Narodytska, N. Asher, F. Pereira, M. Siala, et al.

105 / 106

106 / 106

References i

[Alp14] Ethem Alpaydin.
Introduction to machine learning.
MIT press, 2014.

[ANS20a] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus.
Learning optimal decision trees using caching branch-and-bound search.
In AAAI, pages 3146–3153, 2020.

[ANS20b] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus.
PyDL8.5: a library for learning optimal decision trees.
In IJCAI, pages 5222–5224, 2020.

[Ave20] Florent Avellaneda.
Efficient inference of optimal decision trees.
In AAAI, pages 3195–3202, 2020.

[BHO09] Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan.
Minimising decision tree size as combinatorial optimisation.
In CP, pages 173–187, 2009.

[Dar20] Adnan Darwiche.
Three modern roles for logic in AI.
In PODS, pages 229–243, 2020.

107 / 106

References ii

[dBLSS20] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu.
On the tractability of SHAP explanations.
CoRR, abs/2009.08634, 2020.

[DH20] Adnan Darwiche and Auguste Hirth.
On the reasons behind decisions.
In ECAI, pages 712–720, 2020.

[EG95] Thomas Eiter and Georg Gottlob.
Identifying the minimal transversals of a hypergraph and related problems.
SIAM J. Comput., 24(6):1278–1304, 1995.

[FJ18] Matteo Fischetti and Jason Jo.
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.

[HKWW17] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.
Safety verification of deep neural networks.
In CAV, pages 3–29, 2017.

[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer.
Optimal sparse decision trees.
In NeurIPS, pages 7265–7273, 2019.

108 / 106

References iii

[HSHH20] Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.
Learning optimal decision trees with MaxSAT and its integration in adaboost.
In IJCAI, pages 1170–1176, 2020.

[ICS+20] Alexey Ignatiev, Martin C. Cooper, Mohamed Siala, Emmanuel Hebrard, and João Marques-Silva.
Towards formal fairness in machine learning.
In CP, pages 846–867, 2020.

[Ign20] Alexey Ignatiev.
Towards trustable explainable AI.
In IJCAI, pages 5154–5158, 2020.

[IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On explaining decision trees.
CoRR, abs/2010.11034, 2020.

[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511–1519, 2019.

[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeurIPS, pages 15857–15867, 2019.

109 / 106

References iv

[INM19c] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On validating, repairing and refining heuristic ML explanations.
CoRR, abs/1907.02509, 2019.

[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and Joao Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, pages 627–645, 2018.

[JM20] Mikolás Janota and António Morgado.
SAT-based encodings for optimal decision trees with explicit paths.
In SAT, pages 501–518, 2020.

[KBD+17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
In CAV, pages 97–117, 2017.

[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett.
The marabou framework for verification and analysis of deep neural networks.
In CAV, pages 443–452, 2019.

110 / 106

References v

[KKRR92] Anil P. Kamath, Narendra Karmarkar, K. G. Ramakrishnan, and Mauricio G. C. Resende.
A continuous approach to inductive inference.
Math. Program., 57:215–238, 1992.

[LBL16] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec.
Interpretable decision sets: A joint framework for description and prediction.
In KDD, pages 1675–1684, 2016.

[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765–4774, 2017.

[MGC+20] Joao Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explaining naive bayes and other linear classifiers with polynomial time and delay.
CoRR, abs/2008.05803, 2020.
Accepted at NeurIPS’20.

[NH10] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann machines.
In ICML, pages 807–814, 2010.

111 / 106

References vi

[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362–1368, 2018.

[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267–278, 2019.

[PM17] David Poole and Alan K. Mackworth.
Artificial Intelligence - Foundations of Computational Agents.
CUP, 2017.

[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should I trust you?”: Explaining the predictions of any classifier.
In KDD, pages 1135–1144, 2016.

112 / 106

References vii

[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527–1535. AAAI Press, 2018.

[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103–5111, 2018.

[SCD19] Andy Shih, Arthur Choi, and Adnan Darwiche.
Compiling bayesian network classifiers into decision graphs.
In AAAI, pages 7966–7974, 2019.

[SGM+18] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev.
Fast and effective robustness certification.
In NeurIPS, pages 10825–10836, 2018.

[VNP+20] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quimper, and Pierre Schaus.
Learning optimal decision trees using constraint programming.
In IJCAI, pages 4765–4769, 2020.

[VZ19] Sicco Verwer and Yingqian Zhang.
Learning optimal classification trees using a binary linear program formulation.
In AAAI, pages 1625–1632, 2019.

113 / 106

References viii

[YISB20] Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, and Pierre Le Bodic.
Computing optimal decision sets with SAT.
In CP, pages 952–970, 2020.

[Zho12] Zhi-Hua Zhou.
Ensemble methods: foundations and algorithms.
CRC press, 2012.

114 / 106

	Preliminaries
	Classification Problems in ML
	Logic Overview
	Logic Encodings of ML Models

	Explainability
	Formal Explanations
	Exploiting Abductive Reasoning
	Explanations for Neural Networks
	Results: Explanations for NNs

	Assessing Heuristic Explanations
	Tractable Explanations
	Explaining Decision Trees

	Explanations vs. Adversarial Examples

	Fairness
	Understanding fairness
	Fairness Through Unawareness
	Relating Fairness with Explanations
	Learning Fair Models

	Learning (Interpretable Models)
	Learning Decision Sets
	Background
	Decision Sets
	Decision Sets with SAT

	Learning Decision Trees – Glimpse

	(Comments on) Robustness

