Machine Learning Meets Automated Reasoning:
 Explainability, Fairness, Robustness and Model Learning

Joao Marques-Silva

ANITI, IRIT \& CNRS, Toulouse, France

November 2020

Context - my team's recent \& not so recent work...

Quantification \& CEGAR (QBF, QMaxSAT, etc.)

Function Synthesis (Min DNF cover, ...)

Model Checking, Synthesizing Invariants, ATPG, Reconfiguration

Optimization (MaxSAT, MinSAT, PBO, WBO, etc.)

Propositional Encodings, Backbones, Autarkies, Minimal models, etc.

Enumeration

 (MUSes, MCSes, etc.)Proof Systems (DRMaxSAT, etc.)

Primes, Abduction,
DLs, etc.

Context - new area of research, since 2018...

Quantification \& CEGAR (QBF, QMaxSAT, etc.)

Function Synthesis

Optimization (MaxSAT, MinSAT, PBO, WBO, etc.)
(Min DNF cover, ...)

Model Checking, Synthesizing Invariants, ATPG, Reconfiguration

Enumeration (MUSes, MCSes, etc.)

Proof Systems
(DRMaxSAT, etc.)
Primes, Abduction,
DLs, etc.
Explainability \& Interpretability in ML

Context - new area of research, since 2018...

Quantification \& CEGAR
Function Synthesis

Inconsistency (MUS, MCS, etc.)
(QBF, QMaxSAT, etc.)
(Min DNF cover, ...)

Model Checking, Synthesizing Invariants, ATPG, Reconfiguration

Propositional Encodings, Backbones, Autarkies, Minimal models, etc.

Primes, Abduction, DLs, etc.

Recent \& ongoing ML successes

(0) DeepMind \because AlphaGo

AlphaGo Zero \& Alpha Zero

Image \& Speech Recognition
ILSVRC top-5 Error on ImageNet

But ML models are brittle - adversarial examples

Goodfellow et al., ICLR'15

But ML models are brittle - adversarial examples

Goodfellow et al., ICLR'15

Eykholt et al'18

Aung et al'17

But ML models are brittle - adversarial examples

Adversarial examples can be very problematic

Original image

Dermatoscopic image of a benign melanocytic nevus, along with the diagnostic probability computed by a deep neural network.

Benign

Model confidence

Adversarial noise

Perturbation computed by a common adversarial attack technique.

Adversarial example

Combined image of nevus and attack perturbation and the diagnostic probabilities from the same deep neural network.

Model confidence
Finlayson et al., Nature 2019

Also, some ML models are interpretable

decision|rule lists|sets decision trees; ...

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_{1}	0	0	1	0	0
e_{2}	1	0	0	0	1
e_{3}	0	0	1	1	0
e_{4}	1	0	0	1	1
e_{5}	0	1	1	1	1
e_{6}	0	1	0	1	0
e_{7}	1			1	

Also, some ML models are interpretable

$$
\begin{array}{l|l}
\hline \text { decision } \mid \text { rule lists|sets } & \text { if } \neg \text { Meeting then Hike } \\
\text { decision trees; ... } & \text { if } \neg \text { Vacation then } \neg \text { Hike }
\end{array}
$$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hire (H)
e_{1}	0	0	1	0	0
e_{2}	1	0	0	0	1
e_{3}	0	0	1	1	0
e_{4}	1	0	0	1	1
e_{5}	0	1	1	1	1
e_{6}	0	1	0	1	0
e_{7}	1	1	1		

But other ML models are not (interpretable)...

Machine Learning System

This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

 of 27 April 2016on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance)

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

 of 27 April 2016on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance)
European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance)
European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

- We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016

 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)(Text with EEA relevance)

European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

A new bill would force companies to check their algorithms for bias

We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.

Explainable Artificial Intelligence (XAI)

David Gunning
DARPA/I2O
Program Update November 2017

Why XAI?

In order to only improve their robust- the council
 ness, ${ }^{5}$ but also develop, In te. Intligi- tron ion en gus the free
European Union regulation their reasoning ins spot AI that makes and a "right bility will help us sporistributional drift or Bypecomanem mistakes due to mentations of goals mpanies to check their

 Dot potato ngenataion with haw and features.

 on user-level predictors) that "signifi-
scantly affect" users. When put into practice, the law may also effectively acreate a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.
help humans learn from ant intellithere are legal reasons to want GDPR gimble AI, including the European liability and a growing need to ass, ${ }^{2}$ when AI errs.

DARPA

XAI \& EU guidelines (AI HLEG)

Search

European Commission > Strategy > Digital Single Market > Reports and studies >

Digital Single Market

REPORT / STUDY | 8 April 2019

Ethics guidelines for trustworthy Al

Following the publication of the draft ethics guidelines in December 2018 to which more than 500 comments were received, the independent expert group presents today their

About Artificial intelligence

Blog posts ethics guidelines for trustworthy artificial intelligence.

News

XAI \& the principle of explicability

$\xrightarrow{\sim 1}$ \square

European Commission > Strategy > Digital Single Market > Reports.an

Digital Single Market

The principle of exp building and maspose of Al sys ffected. Without surputput or dec as aslack box a aditability and
 transparent, the capable to those directiy model has gossible. These cability measures le.g. contested. An expla rubuted to tha ircumstancities) may be of inputfactors contrib. In those mapabillies, ility is needed is highy dependen require special attention. transparent comm, The degree to which erroneous or onts were fundamental rigns. if that output ... yroup presents today their

Blog posts of the conseque. .ur trustworthy artificial intelligence.

XAI \& the principle of explicability

N \square

European Commission > Strategy > Digital Single Market > Reports an
Digital Single Market

 of inputfactors contriontion. In those system capabilicability is needed is highly ${ }^{33}$. require special attention munication on system which explicabil. otherwise inaccurate. funda $\begin{aligned} & \text { of the consequences if that ... yroup presents today their }\end{aligned}$

About Artificial intelligence

Blog posts of the consel.ur trustworthy artificial intelligence.

News

ML vs. AR

"Combining machine learning with logic is the challenge of the day"

M. Vardi, MLmFM'18 Summit

ML vs. AR - among today's grand challenges?

"Combining machine learning with logic is the challenge of the day"
M. Vardi, MLmFM'18 Summit

ML vs. AR - among today's grand challenges?

"Combining machine learning with logic is the challenge of the day"
M. Vardi, MLmFM'18 Summit

ML vs. AR - among today's grand challenges?

"Combining machine learning with logic is the challenge of the day"
M. Vardi, MLmFM'18 Summit

ANITI's DeepLEVER chair - our current work

ANITI's DeepLEVER chair - our current work

Explanations

- What is a rigorous explanation?
-Which explanations to compute?
- Computing rigorous explanations
- Assessing heuristic explanations
- Heuristic explanations (with guarantees)
- Tractable explanations
- High-level explanations?

ANITI's DeepLEVER chair - our current work

Synthesis/Learning

- Learning ML models can be cast as a function synthesis problem
- Learning optimal decision trees and sets
- Can conceivably exploit constraint/logic based methods to synthesize any ML model
- Scalability is a known issue!
-What about synthesis for robustness?
-What about synthesis for fairness?

ANITI's DeepLEVER chair - our current work

Fairness

- Which fairness criteria to use?
- Dataset bias vs. model fairness
- Links with explainability
- Links with robustness

ANITI's DeepLEVER chair - our current work

Verification/Robustness

- More efficient reasoning tools
- E.g. more efficient NN reasoning?
- More effective/compact constraint-based encodings
- Alternatives to neural networks
- Binarized NNs
- Extensions of BTs, (D)RFs, etc.

Today's lecture

- Part \#1: Preliminaries
- Logic-based representations of ML models
- Part \#2: Explainability
- Formal explanations vs. heuristic explanations
- Tractable explanations
- Duality in explanations
- Part \#3: Fairness
- First inroads into applying formal methods in fairness
- Part \#4: Learning (interpretable models)
- Learning decision sets (DSs) \& decision trees (DTs)
- Part \#5: Robustness (brief comments)
- Applying formal methods in validating robustness of ML models

Part 1

Preliminaries

Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models

Classification problems

- Set of features $\mathcal{F}=\{1,2, \ldots, n\}$, each taking values from a domain D_{i}
- Features can be categorical or ordinal, discrete or real-valued
- Feature space: $\mathbb{F}=\Pi_{i=1}^{n} D_{i}$

Classification problems

- Set of features $\mathcal{F}=\{1,2, \ldots, n\}$, each taking values from a domain D_{i}
- Features can be categorical or ordinal, discrete or real-valued
- Feature space: $\mathbb{F}=\Pi_{i=1}^{n} D_{i}$
- ML model M computes classification function $\varphi: \mathbb{F} \rightarrow \mathcal{K}$
- For simplicity, we will use $\mathcal{K}=\{\boxplus, \boxminus\}$

Classification problems

- Set of features $\mathcal{F}=\{1,2, \ldots, n\}$, each taking values from a domain D_{i}
- Features can be categorical or ordinal, discrete or real-valued
- Feature space: $\mathbb{F}=\Pi_{i=1}^{n} D_{i}$
- ML model M computes classification function $\varphi: \mathbb{F} \rightarrow \mathcal{K}$
- For simplicity, we will use $\mathcal{K}=\{\boxplus, \boxminus\}$
- Instance $\mathbf{v} \in \mathbb{F}$, with prediction $c=\varphi(\mathbf{v}), c \in \mathcal{K}$
- Obs: instance \approx example \approx sample \approx point

Classification problems

- Set of features $\mathcal{F}=\{1,2, \ldots, n\}$, each taking values from a domain D_{i}
- Features can be categorical or ordinal, discrete or real-valued
- Feature space: $\mathbb{F}=\Pi_{i=1}^{n} D_{i}$
- ML model M computes classification function $\varphi: \mathbb{F} \rightarrow \mathcal{K}$
- For simplicity, we will use $\mathcal{K}=\{\boxplus, \boxminus\}$
- Instance $\mathbf{v} \in \mathbb{F}$, with prediction $c=\varphi(\mathbf{v}), c \in \mathcal{K}$
- Obs: instance \approx example \approx sample \approx point
- Each $\mathbf{v} \in \mathbb{F}$ is also represented as a set of literals, $\mathcal{C}_{\mathbf{v}}=\left\{\left(x_{i}=v_{i}\right) \mid i \in \mathcal{F}\right\}$
- For boolean features, $x_{i}=0$ represented by $\neg x_{i}$ and $x_{i}=1$ represented by x_{i}

Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models

Entailment

- Let φ represent some formula, defined on feature space \mathbb{F}, and representing a function $\varphi: \mathbb{F} \rightarrow\{0,1\}$
- Let τ represent some other formula, also defined on \mathbb{F}, and with $\tau: \mathbb{F} \rightarrow\{0,1\}$

Entailment

- Let φ represent some formula, defined on feature space \mathbb{F}, and representing a function $\varphi: \mathbb{F} \rightarrow\{0,1\}$
- Let τ represent some other formula, also defined on \mathbb{F}, and with $\tau: \mathbb{F} \rightarrow\{0,1\}$
- We say that τ entails φ, written as $\tau \models \varphi$, if:

$$
\forall(\mathbf{x} \in \mathbb{F}) \cdot[\tau(\mathbf{x}) \rightarrow \varphi(\mathbf{x})]
$$

Entailment

- Let φ represent some formula, defined on feature space \mathbb{F}, and representing a function $\varphi: \mathbb{F} \rightarrow\{0,1\}$
- Let τ represent some other formula, also defined on \mathbb{F}, and with $\tau: \mathbb{F} \rightarrow\{0,1\}$
- We say that τ entails φ, written as $\tau \models \varphi$, if:

$$
\forall(\mathbf{x} \in \mathbb{F}) \cdot[\tau(\mathbf{x}) \rightarrow \varphi(\mathbf{x})]
$$

- An example:
- $\mathfrak{F}=\{0,1\}^{2}$
- $\varphi\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}$
- Clearly, $x_{1} \vDash \varphi$ and $\rightarrow x_{2} \vDash \varphi$

Entailment

- Let φ represent some formula, defined on feature space \mathbb{F}, and representing a function $\varphi: \mathbb{F} \rightarrow\{0,1\}$
- Let τ represent some other formula, also defined on \mathbb{F}, and with $\tau: \mathbb{F} \rightarrow\{0,1\}$
- We say that τ entails φ, written as $\tau \models \varphi$, if:

$$
\forall(\mathbf{x} \in \mathbb{F}) \cdot[\tau(\mathbf{x}) \rightarrow \varphi(\mathbf{x})]
$$

- An example:
- $\mathbb{F}=\{0,1\}^{2}$
- $\varphi\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}$
- Clearly, $x_{1} \vDash \varphi$ and $\rightarrow x_{2} \vDash \varphi$
- Another example:
- $\mathfrak{F}=\{0,1\}^{3}$
- $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge x_{2} \vee x_{1} \wedge x_{3}$
- Clearly, $x_{1} \wedge x_{2} \vDash \varphi$ and $x_{1} \wedge x_{3} \vDash \varphi$

Entailment

- Let φ represent some formula, defined on feature space \mathbb{F}, and representing a function $\varphi: \mathbb{F} \rightarrow\{0,1\}$
- Let τ represent some other formula, also defined on \mathbb{F}, and with $\tau: \mathbb{F} \rightarrow\{0,1\}$
- We say that τ entails φ, written as $\tau \models \varphi$, if:

$$
\forall(\mathbf{x} \in \mathbb{F}) \cdot[\tau(\mathbf{x}) \rightarrow \varphi(\mathbf{x})]
$$

- An example:
- $\mathbb{F}=\{0,1\}^{2}$
- $\varphi\left(x_{1}, x_{2}\right)=x_{1} \vee \neg x_{2}$
- Clearly, $x_{1} \vDash \varphi$ and $\rightarrow x_{2} \vDash \varphi$
- Another example:
- $\mathbb{F}=\{0,1\}^{3}$
- $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge x_{2} \vee x_{1} \wedge x_{3}$
- Clearly, $x_{1} \wedge x_{2} \vDash \varphi$ and $x_{1} \wedge x_{3} \vDash \varphi$
- For non-boolean feature spaces, we let φ_{c} denote the predicate $\varphi(\mathrm{x})=c$, i.e. $\varphi_{c}(\mathrm{x}) \in\{0,1\}$

Prime implicants \& implicates

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a prime implicant of some function φ if,

1. $\pi \vDash \varphi$
2. For any $\pi^{\prime} \subsetneq \pi, \pi^{\prime} \nLeftarrow \varphi$

Prime implicants \& implicates

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a prime implicant of some function φ if,

1. $\pi \models \varphi$
2. For any $\pi^{\prime} \subsetneq \pi, \pi^{\prime} \not \vDash \varphi$

- Example:
- $\mathfrak{F}=\{0,1\}^{3}$
- $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge x_{2} \vee x_{1} \wedge x_{3}$
- Clearly, $x_{1} \wedge x_{2} \vDash \varphi$
- Also, $x_{1} \nLeftarrow \varphi$ and $x_{2} \not \vDash \varphi$

Prime implicants \& implicates

- A conjunction of literals π (which will be viewed as a set of literals where convenient) is a prime implicant of some function φ if,

1. $\pi \models \varphi$
2. For any $\pi^{\prime} \subsetneq \pi, \pi^{\prime} \not \vDash \varphi$

- Example:
- $\mathfrak{F}=\{0,1\}^{3}$
- $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge x_{2} \vee x_{1} \wedge x_{3}$
- Clearly, $x_{1} \wedge x_{2} \vDash \varphi$
- Also, $x_{1} \not \models \varphi$ and $x_{2} \not \vDash \varphi$
- A disjunction of literals ρ (also viewed as a set of literals where convenient) is a prime implicate of some function φ if

1. $\varphi \models \rho$
2. For any $\rho^{\prime} \subsetneq \rho, \varphi \not \models \rho^{\prime}$

Recap tools of the trade

- SAT: decision problem for propositional logic
- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.
- There are quantified variants: QBF, QMaxSAT, etc.
- SMT: decision problem for (decidable) fragments of first-order logic (FOL)
- There are optimization variants: MaxSMT, etc.
- There are quantified variants
- MILP: decision/optimization problems defined on conjunctions of linear inequalities over integer \& real-valued variables
- CP: constraint programming
- There are optimization/quantified variants

Recap tools of the trade

- SAT: decision problem for propositional logic
- Formulas most often represented in CNF
- There are optimization variants: MaxSAT, PBO, MinSAT, etc.

Lecture on SAT \& SMT assumed. See links below.

- There are quantified variants: QBF, QMaxSAT, etc.
- SMT: decision problem for (decidable) fragments of first-order logic (FOL)
- There are optimization variants: MaxSMT, etc.
- There are quantified variants
- MILP: decision/optimization problems defined on conjunctions of linear inequalities over integer \& real-valued variables
- CP: constraint programming
- There are optimization/quantified variants
- Background on SAT/SMT:
- https://alexeyignatiev.github.io/ssa-school-2019/
- https://alexeyignatiev.github.io/ijcai19tut/

Outline

Classification Problems in ML

Logic Overview

Logic Encodings of ML Models

Rules with ordinal features

- Example ML model:

Features: $x_{1}, x_{2} \in\{0,1,2\}$ (integer)
Rules:

$$
\begin{array}{llll}
\text { IF } & 2 x_{1}+x_{2}>0 & \text { THEN } & \text { predict } \boxplus \\
\text { IF } & 2 x_{1}-x_{2} \leqslant 0 & \text { THEN } & \text { predict } \square
\end{array}
$$

Rules with ordinal features

－Example ML model：
Features：$x_{1}, x_{2} \in\{0,1,2\}$（integer）
Rules：

$$
\begin{array}{llll}
\text { IF } & 2 x_{1}+x_{2}>0 & \text { THEN } & \text { predict } \boxplus \\
\text { IF } & 2 x_{1}-x_{2} \leqslant 0 & \text { THEN } & \text { predict } \boxminus
\end{array}
$$

－Q：Can the model predict both $⿴ 囗 十$ and \boxminus for some instance？

Rules with ordinal features

－Example ML model：
Features：$x_{1}, x_{2} \in\{0,1,2\}$（integer）
Rules：

$$
\begin{array}{llll}
\text { IF } & 2 x_{1}+x_{2}>0 & \text { THEN } & \text { predict } \boxplus \\
\text { IF } & 2 x_{1}-x_{2} \leqslant 0 & \text { THEN } & \text { predict } \square
\end{array}
$$

－Q：Can the model predict both $⿴ 囗 十$ and \boxminus for some instance？
－Yes，of course：pick $x_{1}=0$ and $x_{2}=1$

Rules with ordinal features

－Example ML model：
Features：$x_{1}, x_{2} \in\{0,1,2\}$（integer）
Rules：

$$
\begin{array}{llll}
\text { IF } & 2 x_{1}+x_{2}>0 & \text { THEN } & \text { predict } \boxplus \\
\text { IF } & 2 x_{1}-x_{2} \leqslant 0 & \text { THEN } & \text { predict } \boxminus
\end{array}
$$

－Q：Can the model predict both $⿴ 囗 十$ and \boxminus for some instance？
－Yes，of course：pick $x_{1}=0$ and $x_{2}=1$
－A formalization：

$$
y_{p} \leftrightarrow\left(2 x_{1}+x_{2}>0\right) \wedge y_{n} \leftrightarrow\left(2 x_{1}-x_{2} \leqslant 0\right) \wedge\left(y_{p}\right) \wedge\left(y_{n}\right)
$$

．．．and solve with SMT solver
\therefore There exists a model iff there exists a point in feature space yielding both predictions

Decision sets

- Example ML model:

Features: $x_{1}, x_{2} \in\{0,1\}$ (boolean)
Rules:

IF	$x_{1} \wedge \neg x_{2} \wedge x_{3}$	THEN	predict \boxplus
IF	$x_{1} \wedge \neg x_{3} \wedge x_{4}$	THEN	predict \boxminus
IF	$x_{3} \wedge x_{4}$	THEN	predict \boxminus

Decision sets

－Example ML model：
Features：$x_{1}, x_{2} \in\{0,1\}$（boolean）
Rules：

IF	$x_{1} \wedge \neg x_{2} \wedge x_{3}$	THEN	predict \boxplus
IF	$x_{1} \wedge \neg x_{3} \wedge x_{4}$	THEN	predict \boxminus
IF	$x_{3} \wedge x_{4}$	THEN	predict \boxminus

－Q：Can the model predict both $⿴ 囗 十$ and \boxminus for some instance？

Decision sets

- Example ML model:

Features: $x_{1}, x_{2} \in\{0,1\}$ (boolean)
Rules:

IF	$x_{1} \wedge \neg x_{2} \wedge x_{3}$	THEN	predict \boxplus
IF	$x_{1} \wedge \neg x_{3} \wedge x_{4}$	THEN	predict \boxminus
IF	$x_{3} \wedge x_{4}$	THEN	predict \boxminus

- Q: Can the model predict both \boxplus and \boxminus for some instance?
- Yes, certainly: pick $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

Decision sets

－Example ML model：
Features：$x_{1}, x_{2} \in\{0,1\}$（boolean）
Rules：

IF	$x_{1} \wedge \neg x_{2} \wedge x_{3}$	THEN	predict \boxplus
IF	$x_{1} \wedge \neg x_{3} \wedge x_{4}$	THEN	predict \boxminus
IF	$x_{3} \wedge x_{4}$	THEN	predict \boxminus

－Q：Can the model predict both $⿴ 囗 十$ and \boxminus for some instance？
－Yes，certainly：pick $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$
－A formalization：

$$
\begin{aligned}
& y_{p, 1} \leftrightarrow\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \wedge \\
& y_{n, 1} \leftrightarrow\left(x_{1} \wedge \neg x_{3} \wedge x_{4}\right) \wedge \\
& y_{n, 2} \leftrightarrow\left(x_{3} \wedge x_{4}\right) \wedge\left(y_{p} \leftrightarrow y_{p, 1}\right) \wedge \\
& \left(y_{n} \leftrightarrow\left(y_{n, 1} \vee y_{n, 2}\right)\right) \wedge\left(y_{p}\right) \wedge\left(y_{n}\right)
\end{aligned}
$$

．．．and solve with SAT solver（after clausification）
\therefore There exists a model iff there exists a point in feature space yielding both predictions

Neural networks

- Each layer (except first) viewed as a block, and
- Compute \mathbf{x}^{\prime} given input \mathbf{x}, weights matrix \mathbf{A}, and bias vector \mathbf{b}
- Compute output \mathbf{y} given \mathbf{x}^{\prime} and activation function

Neural networks

- Compute \mathbf{x}^{\prime} given input \mathbf{x}, weights matrix \mathbf{A}, and bias vector \mathbf{b}
- Compute output \mathbf{y} given \mathbf{x}^{\prime} and activation function
- Each unit uses a ReLU activation function

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}+\mathbf{b} \\
& \mathbf{y}=\max \left(\mathbf{x}^{\prime}, \mathbf{0}\right)
\end{aligned}
$$

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}+\mathbf{b} \\
& \mathbf{y}=\max \left(\mathbf{x}^{\prime}, \mathbf{0}\right)
\end{aligned}
$$

Encoding each block:

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} x_{j}+b_{i}=y_{i}-s_{i} \\
& z_{i}=1 \rightarrow y_{i} \leqslant 0 \\
& z_{i}=0 \rightarrow s_{i} \leqslant 0 \\
& y_{i} \geqslant 0, s_{i} \geqslant 0, z_{i} \in\{0,1\}
\end{aligned}
$$

Encoding NNs using MILP

Computation for a NN ReLU block, in two steps:

Boosted trees - glimpse of SMT encoding

- Number of trees: $m \times q$, with m classes and q trees per class
- Each non-leaf represented by literal (f_{j} is true?)
- Associate boolean variable with literal: $b_{i} \leftrightarrow\left(f_{i}\right.$?)
- Each leaf node represented by some real value
- For each path in each tree:
- If path condition holds, then tree value is leaf value

$$
\bigwedge_{n_{i} \in R_{p}} b_{n_{j} \cdot i d x} \bigwedge_{n_{i} \in L_{p}} \neg b_{n_{j} \cdot i d x} \rightarrow r_{l}=n_{d} \cdot v a l
$$

- Score of class j is sum over its q trees: $v_{j}=\sum_{l=1}^{q} r_{q j+l}$

Questions for part 1?

Part 2

Explainability

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

Computing explanations - assumptions

- Categorical features, $\mathcal{F}=\{1,2, \ldots, n\}$, each taking values from a(n unordered) domain D_{i}
- Feature space: $\mathbb{F}=\Pi_{i=1}^{n} D_{i}$
- ML model M computes classification function $\mathcal{M}(\mathbf{x}) \in\{\boxplus, \boxminus\}$, with $\mathbf{x} \in \mathbb{F}$
- Instance $\mathbf{v} \in \mathbb{F}$, with prediction $c=\mathcal{M}(\mathbf{v})$
- Prediction literal: $\mathcal{L} \triangleq(\mathcal{M}(\mathbf{v})=c)$
- Each point $\mathbf{v} \in \mathbb{F}$ is also represented as a set of literals (a cube), $\mathcal{C}=\left\{\left(x_{i}=v_{i}\right) \mid i \in \mathcal{F}\right\}$

Our approach

Component	Representation	Notes
	\mathcal{C}	Conjunction of literals, i.e. cube
	M	Model encoding, e.g. SAT/SMT/CP/ILP/FOL
Cat	\mathcal{L}	Predicted class, i.e. literal

Relating with abduction

What we know
$\mathcal{C} \wedge \mathcal{M} \vDash \mathcal{L}$

Relating with abduction

What we know

$$
\mathcal{C} \wedge \mathcal{M} \vDash \mathcal{L}
$$

	Hypotheses	\mathcal{C}
Propositional	Theory	\mathcal{M}
Abduction	Manifestation	\mathcal{L}
Goal	Find $\mathcal{C}_{m} \subseteq \mathcal{C}$, s.t.	$\mathcal{C}_{m} \wedge \mathcal{M} \nLeftarrow \perp \wedge \mathcal{C}_{m} \wedge \mathcal{M} \vDash \mathcal{L}$

Relating with abduction

What we know
$\mathcal{C} \wedge \mathcal{M} \vDash \mathcal{L}$

	Hypotheses	\mathcal{C}
Propositional	Theory	\mathcal{M}
	Manifestation	\mathcal{L}
Goal	Find $\mathcal{C}_{m} \subseteq \mathcal{C}$, s.t.	$\mathcal{C}_{m} \wedge \mathcal{M} \nLeftarrow \perp \wedge \mathcal{C}_{m} \wedge \mathcal{M} \vDash \mathcal{L}$

But,	$\mathcal{C}_{m} \wedge \mathcal{M} \not \models \perp$ is tautology
And,	$\mathcal{C}_{m} \wedge \mathcal{M} \models \mathcal{L}$ iff $\mathcal{C}_{m} \models \mathcal{M} \rightarrow \mathcal{L}$
Thus,	\mathcal{C}_{m} is prime implicant of $\mathcal{M} \rightarrow \mathcal{L}$

Relating with abduction

What we know
$\mathcal{C} \wedge \mathcal{M} \vDash \mathcal{L}$

Propositional
 Abduction

Hypotheses
C
Theory \mathcal{M}
Manifestation \mathcal{L}

Goal
Find $\mathcal{C}_{m} \subseteq \mathcal{C}$, s.t. $\mathcal{C}_{m} \wedge \mathcal{M} \not \vDash \perp \wedge \mathcal{C}_{m} \wedge \mathcal{M} \vDash \mathcal{L}$

But,	$\mathcal{C}_{m} \wedge \mathcal{M} \not \vDash \perp$ is tautology
And,	$\mathcal{C}_{m} \wedge \mathcal{M} \vDash \mathcal{L}$ iff $\mathcal{C}_{m} \models \mathcal{M} \rightarrow \mathcal{L}$
Thus,	\mathcal{C}_{m} is prime implicant of $\mathcal{M} \rightarrow \mathcal{L}$

We can compute subset-/cardinality-minimal (prime) implicants

Relating with abduction

What we know
$\mathcal{C} \wedge \mathcal{M} \vDash \mathcal{L}$

Propositional
Abduction

Goal
Find $\mathcal{C}_{m} \subseteq \mathcal{C}$, s.t.
$\mathcal{C}_{m} \wedge \mathcal{M} \vDash \perp \wedge \mathcal{C}_{m} \wedge \mathcal{M} \vDash \mathcal{L}$

Hypotheses
Theory
Manifestation

Obs: For any instance consistent with \mathcal{C}_{m}, and given the model \mathcal{M}, the prediction is \mathcal{L} !

But,
And,
Thus,
$\mathcal{C}_{m} \wedge \mathcal{M} \not \vDash \perp$ is tautology
$\mathcal{C}_{m} \wedge \mathcal{M} \vDash \mathcal{L}$ iff $\mathcal{C}_{m} \models \mathcal{M} \rightarrow \mathcal{L}$
\mathcal{C}_{m} is prime implicant of $\mathcal{M} \rightarrow \mathcal{L}$

We can compute subset-/cardinality-minimal (prime) implicants i.e. explanations!

Computing one subset-minimal explanation

```
Input: formula }\mathcal{M}\mathrm{ , input cube }\mathcal{C}\mathrm{ , prediction }\mathcal{L
Output: Subset-minimal explanation }\mp@subsup{\mathcal{C}}{m}{}\subseteq\mathcal{C
begin
    for l }\in\mathcal{C}\mathrm{ :
        if Entails(\mathcal{C}\{l},\mathcal{M}->\mathcal{L}):
        \mathcal { C } \leftarrow \mathcal { C } \ \{ l \}
    return }\mathcal{C
end
```


Computing one subset-minimal explanation

Input: formula \mathcal{M}, input cube \mathcal{C}, prediction \mathcal{L}
Output: Subset-minimal explanation $\mathcal{C}_{m} \subseteq \mathcal{C}$
begin
for $l \in \mathcal{C}$:
if Entails $(\mathcal{C} \backslash\{1\}, \mathcal{M} \rightarrow \mathcal{L})$: $\mathcal{C} \leftarrow \mathcal{C} \backslash\{1\}$
return \mathcal{C}
end

Computing one cardinality-minimal explanation

```
Input: formula \mathcal{M}\mathrm{ , input cube }\mathcal{C}\mathrm{ , prediction }\mathcal{L}
Output: Cardinality-minimal explanation }\mp@subsup{\mathcal{C}}{m}{}\subseteq\mathcal{C
\Gamma \leftarrow \varnothing
while true do
    \mathcal{C}
                                    // Implicit hitting set dualization
    if Entails(\mp@subsup{\mathcal{C}}{m}{},\mathcal{M}->\mathcal{L}):
        return }\mp@subsup{\mathcal{C}}{m}{
    else:
    \mu}\leftarrow\mathrm{ GetAssignment()
        \mp@subsup{\mathcal{C}}{T}{}\leftarrow PickFalseLits(\mathcal{C}\\mp@subsup{\mathcal{C}}{m}{},\mu)
        \Gamma\leftarrow\Gamma\cup\mathcal{C}
end
```


Computing one cardinality-minimal explanation

Input: formula \mathcal{M}, input cube \mathcal{C}, prediction \mathcal{L}
Output: Cardinality-minimal explanation $\mathcal{C}_{m} \subseteq \mathcal{C}$
$\Gamma \leftarrow \varnothing$
while true do
$\mathcal{C}_{m} \leftarrow$ MinimumHS (Γ)
// Implicit hitting set dualization
if Entails $\left(\mathcal{C}_{m}, \mathcal{M} \rightarrow \mathcal{L}\right)$:
return \mathcal{C}_{m}
else:
$\mu \leftarrow$ GetAssignment()
$\mathcal{C}_{T} \leftarrow$ PickFalseLits $\left(\mathcal{C} \backslash \mathcal{C}_{m}, \mu\right)$
$\Gamma \leftarrow \Gamma \cup \mathcal{C}_{T}$
end

In summary

- Target (minimal) sufficient conditions for prediction:
- I.e. we equate explanations with (prime) implicants
- Approach computes set of literals $\mathcal{C}_{m} \subseteq \mathcal{C}$ such that $\forall(\mathrm{x} \in \mathbb{F}) \cdot \mathcal{C}_{m}(\mathrm{x}) \rightarrow(\mathcal{M}(\mathrm{x})=\boxplus)$
- Note: Equating explanations with prime implicants also proposed in compilation-based approaches
- Referred to as PI-explanations
- Main difference: compilation vs. use of NP oracles

Recap - encoding NNs

- Compute \mathbf{x}^{\prime} given input \mathbf{x}, weights matrix \mathbf{A}, and bias vector \mathbf{b}
- Compute output \mathbf{y} given \mathbf{x}^{\prime} and activation function
- Each unit uses a ReLU activation function

Recap - encoding NNs (using MILP)

Computation for a NN ReLU block, in two steps:

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}+\mathbf{b} \\
& \mathbf{y}=\max \left(\mathbf{x}^{\prime}, \mathbf{0}\right)
\end{aligned}
$$

Encoding each block:

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} x_{j}+b_{i}=y_{i}-s_{i} \\
& z_{i}=1 \rightarrow y_{i} \leqslant 0 \\
& z_{i}=0 \rightarrow s_{i} \leqslant 0 \\
& y_{i} \geqslant 0, s_{i} \geqslant 0, z_{i} \in\{0,1\}
\end{aligned}
$$

Sample of experimental results

Dataset			Minimal explanation			Minimum explanation		
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)
australian	(14)	m	1	0.03	0.05	-	-	-
		a	8.79	1.38	0.33	-	-	-
		M	14	17.00	1.43	-	-	-
backache	(32)	m	13	0.13	0.14	-	-	-
		a	19.28	5.08	0.85	-	-	-
		M	26	22.21	2.75	-	-	-
breast-cancer	(9)	m	3	0.02	0.04	3	0.02	0.03
		a	5.15	0.65	0.20	4.86	2.18	0.41
		M	9	6.11	0.41	9	24.80	1.81
cleve	(13)	m	4	0.05	0.07	4	-	0.07
		a	8.62	3.32	0.32	7.89	-	5.14
		M	13	60.74	0.60	13	-	39.06
hepatitis	(19)	m	6	0.02	0.04	4	0.01	0.04
		a	11.42	0.07	0.06	9.39	4.07	2.89
		M	19	0.26	0.20	19	27.05	22.23
voting	(16)	m	3	0.01	0.02	3	0.01	0.02
		a	4.56	0.04	0.13	3.46	0.3	0.25
		M	11	0.10	0.37	11	1.25	1.77
spect	(22)	m	3	0.02	0.02	3	0.02	0.04
		a	7.31	0.13	0.07	6.44	1.61	0.67
		M	20	0.88	0.29	20	8.97	10.73

Sample of experimental results

First rigorous approach for explaining NNs !			Minimal explanation			Minimum explanation		
			size	SMT (s)	MILP (s)	size	SMT (s)	MILP (s)
australian			1	0.03	0.05	-	-	-
			8.79	1.38	0.33	-	-	-
			14	17.00	1.43	-	-	-
backache	(32)	m	13	0.13	0.14	-	-	-
		a	19.28	5.08	0.85	-	-	-
		M	26	22.21	2.75	-	-	-
breast-cancer		m	3	0.02	0.04	3	0.02	0.03
	(9)	a	5.15	0.65	0.20	4.86	2.18	0.41
		M	9	6.11	0.41	9	24.80	1.81
cleve	(13)	m	4	0.05	0.07	4	-	0.07
		a	8.62	3.32	0.32	7.89	-	5.14
		M	13	60.74	0.60	13	-	39.06
hepatitis	(19)	m	6	0.02	0.04	4	0.01	0.04
		a	11.42	0.07	0.06	9.39	4.07	2.89
		M	19	0.26	0.20	19	27.05	22.23
voting	(16)	m	3	0.01	0.02	3	0.01	0.02
		a	4.56	0.04	0.13	3.46	0.3	0.25
		M	11	0.10	0.37	11	1.25	1.77
spect	(22)	m	3	0.02	0.02	3	0.02	0.04
		a	7.31	0.13	0.07	6.44	1.61	0.67
		M	20	0.88	0.29	20	8.97	10.73

Sample of experimental results

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

Computing heuristic explanations

- Many (highly visible) heuristic explanation approaches:
- LIME
- SHAP
- Anchor

Computing heuristic explanations

- Many (highly visible) heuristic explanation approaches:
- LIME
- SHAP
- Anchor
- Q: How to assess the quality of heuristic explanations?

Overview of heuristic approaches

- LIME \& SHAP:
[RSG16, LL17]
- Goal: learn a simple interpretable ML model, e.g. linear classifier, decision tree, etc.
- Approach: train classifier vs. game theory
- LIME is sample-based
- Obs 01: Exact SHAP explanations are as hard as computing the expected value of the model
- Obs 02: Exact SHAP explanations are \#P-hard for some classes of models
- Anchor:
- Goal: Learn features deemed more relevant for prediction
- Anchor is sample-based
- No formal guarantees of rigor in computed explanations

A first experiment

What is the overall quality of heuristic explanations in light of computed heuristic explanations?

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute heuristic explanation for some instance

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute heuristic explanation for some instance
- Use our abduction-based approach to assess whether heuristic explanation holds globally, i.e. whether it is a PI-explanation, and

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute heuristic explanation for some instance
- Use our abduction-based approach to assess whether heuristic explanation holds globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it

- Explanation is incorrect: set of literals is not sufficient for prediction!

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute heuristic explanation for some instance
- Use our abduction-based approach to assess whether heuristic explanation holds globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it

- Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it

- Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute heuristic explanation for some instance
- Use our abduction-based approach to assess whether heuristic explanation holds globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it

- Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it

- Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

Approach

- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute heuristic explanation for some instance

- Use our abduction-based approach to assess whether heuristic explanation holds globally, i.e. whether it is a PI-explanation, and

1. If it does not hold globally, then fix it

- Explanation is incorrect: set of literals is not sufficient for prediction!

2. If it holds globally but has redundant literals, then refine it

- Explanation is redundant: set of literals is sufficient for prediction, but some literals are unnecessary

3. Otherwise, report the heuristic explanation as a PI-explanation

XPlainer - validating, refining \& repairing heuristic explanations

An example - zoo dataset

- Example instance:

IF (animal_name $=$ pitviper $) \wedge \neg$ hair $\wedge \neg$ feathers \wedge eggs $\wedge \neg$ milk \wedge \neg airborne $\wedge \neg$ aquatic \wedge predator $\wedge \neg$ toothed \wedge backbone \wedge breathes \wedge venomous $\wedge \neg$ fins \wedge (legs $=0) \wedge$ tail $\wedge \neg$ domestic $\wedge \neg$ catsize
THEN (class = reptile)

An example - zoo dataset

- Example instance (\& Anchor picks):

IF (animal_name $=$ pitviper) $\wedge \neg$ hair $\wedge \neg$ feathers \wedge eggs $\wedge \neg$ milk \wedge \neg airborne $\wedge \neg$ aquatic \wedge predator $\wedge \neg$ toothed \wedge backbone \wedge breathes \wedge venomous $\wedge \neg$ fins \wedge (legs $=0) \wedge$ tail $\wedge \neg$ domestic $\wedge \neg$ catsize
THEN (class $=$ reptile)

An example - zoo dataset

- Explanation obtained with Anchor:

IF \quad hair $\wedge \neg$ milk $\wedge \neg$ toothed $\wedge \neg$ fins
THEN (class = reptile)

An example - zoo dataset

- But, explanation incorrectly "explains" another instance (from training data!)

IF $\quad($ animal_name $=$ toad $) \wedge \neg$ hair $\wedge \neg$ feathers \wedge eggs $\wedge \neg$ milk \wedge \neg airborne $\wedge \neg$ aquatic $\wedge \neg$ predator $\wedge \neg$ toothed \wedge backbone \wedge breathes \wedge \neg venomous $\wedge \neg$ fins \wedge (legs $=4) \wedge \neg$ tail $\wedge \neg$ domestic $\wedge \neg$ catsize
THEN (class = amphibian)

Some results

Dataset	(\# unique)	Explanations								
		incorrect			redundant			correct		
		LIME	Anchor	SHAP	LIME	Anchor	SHAP	LIME	Anchor	SHAP
adult	(5579)	61.3\%	80.5\%	70.7\%	7.9\%	1.6\%	10.2 \%	30.8\%	17.9\%	19.1 \%
lending	(4414)	24.0\%	3.0\%	17.0\%	0.4\%	0.0\%	2.5\%	75.6\%	97.0\%	80.5\%
rcdv	(3696)	94.1\%	99.4\%	85.9\%	4.6\%	0.4\%	7.9\%	1.3\%	0.2\%	6.2\%
compas	(778)	71.9\%	84.4\%	60.4\%	20.6\%	1.7%	27.8\%	7.5\%	13.9\%	11.8\%
german	(1000)	85.3\%	99.7\%	63.0\%	14.6\%	0.2\%	37.0\%	0.1 \%	0.1 \%	0.0\%

Some results

A second experiment

How often are heuristic explanations consistent with prediction?

Approach

- Exploit ML model with SAT-based encoding
- In our case: used binarized neural networks (BNNs)
- Compute heuristic explanations with Anchor (similar results with LIME or SHAP)
- Use (approximate) model counter to assess how often explanation is consistent with prediction

Preliminary results

- Anchor often claims $\approx 99 \%$ precision

Preliminary results

- Anchor often claims $\approx 99 \%$ precision; our results demonstrate otherwise

Preliminary results

- Anchor often claims $\approx 99 \%$ precision; our results demonstrate otherwise

Questions on formal vs. heuristic explanations?

Outline

Formal Explanations

Assessing Heuristic Explanations

Tractable Explanations

Explanations vs. Adversarial Examples

Why PI-explanations for DTs?

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

- Why is prediction \boxplus ?
- PI-explanation for prediction \boxplus given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?

Why PI-explanations for DTs?

[IIM20]

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

-Why is prediction \boxplus ?
- PI-explanation for prediction $⿴ 囗$ given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

-Why is prediction \boxplus ?
- PI-explanation for prediction $⿴ 囗$ given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:
- Prediction changes if x_{1} can take any value in $\{0,1\}$?

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

-Why is prediction \boxplus ?
- PI-explanation for prediction $⿴ 囗$ given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:
- Prediction changes if x_{1} can take any value in $\{0,1\}$? No

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

- Why is prediction \boxplus ?
- PI-explanation for prediction \boxplus given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:
- Prediction changes if x_{1} can take any value in $\{0,1\}$? No
- Prediction changes if x_{2} and x_{1} can take any value in $\{0,1\}$?

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

- Why is prediction \boxplus ?
- PI-explanation for prediction \boxplus given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:
- Prediction changes if x_{1} can take any value in $\{0,1\}$? No
- Prediction changes if x_{2} and x_{1} can take any value in $\{0,1\}$? No

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

- Why is prediction \boxplus ?
- PI-explanation for prediction $⿴ 囗$ given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:
- Prediction changes if x_{1} can take any value in $\{0,1\}$? No
- Prediction changes if x_{2} and x_{1} can take any value in $\{0,1\}$? No
- PI-explanation: $\left(x_{3}=1\right) \wedge\left(x_{4}=1\right)$

Why PI-explanations for DTs?

- Instance: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$

- Why is prediction \boxplus ?
- PI-explanation for prediction $⿴ 囗$ given instance $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1)$?
- Analysis:
- Prediction changes if x_{1} can take any value in $\{0,1\}$? No
- Prediction changes if x_{2} and x_{1} can take any value in $\{0,1\}$? No
- PI-explanation: $\left(x_{3}=1\right) \wedge\left(x_{4}=1\right)$
- Obs: There are functions for which some paths grows with number of features, and PI-explanation is of constant-size

Need for PI-explanations in DTs is ubiquitous- Russell\&Norving's book

- PI-explanation for (P, H, T, W) $=$ (Full, Yes, Thai, No $)$?

Need for PI-explanations in DTs is ubiquitous- Zhou's book

- PI-explanation for $(x, y)=(1.25,-1.13)$?

Obs: Pl-explanations can be computed for categorical, ordinal, integer or real-valued features !

Need for PI-explanations in DTs is ubiquitous- Alpaydin's book

- Pl-explanation for $\left(x_{1}, x_{2}\right)=(3.14,0.87)$?

Obs: PI-explanations can be computed for categorical, ordinal, integer or real-valued features !

Need for PI-explanations in DTs is ubiquitous- Poole\&Mackworth's book

- PI-explanation for (L, T, A) $=$ (Short, Follow-Up, Unknown)?
- PI-explanation for (L, T, A) = (Short, Follow-Up, Known)?

DT explanations

DT explanations

- Run PI-explanation algorithm based on NP-oracles
- Worst-case exponential time

DT explanations

- Run PI-explanation algorithm based on NP-oracles
- Worst-case exponential time
- For prediction \boxplus, it suffices to ensure all \boxminus paths remain inconsistent

DT explanations in polynomial time

- Run PI-explanation algorithm based on NP-oracles
- Worst-case exponential time
- For prediction \boxplus, it suffices to ensure all \boxminus paths remain inconsistent
- I.e. find a subset-minimal hitting set of all \boxminus paths; these are the features to keep
- Well-known to be solvable in polynomial time

Experimental evidence

			1 AI									ITI								
			D	\#N	\%A	\#P	\%R	\%C	\%m	\%M	\%avg	D	\#N	\%A	\#P	\%R	\%C	\%m	\%M	\%avg
adult	(12	6061)	6	83	78	42	33	25	20	40	25	17	509	73	255	75	91	10	66	22
anneal	(38	886)	6	29	99	15	26	16	16	33	21	9	31	100	16	25	4	12	20	16
backache	(32	180)	4	17	72	9	33	39	25	33	30	3	9	91	5	80	87	50	66	54
bank	(19	36293)	6	113	88	57	5	12	16	20	18	19	1467	86	734	69	64	7	63	27
biodegradation	(41	1052)	5	19	65	10	30	1	25	50	33	8	71	76	36	50	8	14	40	21
cancer	(9	449)	6	37	87	19	36	9	20	25	21	5	21	84	11	54	10	25	50	37
car	(6	1728)	6	43	96	22	86	89	20	80	45	11	57	98	29	65	41	16	50	30
colic	(22	357)	6	55	81	28	46	6	16	33	20	4	17	80	9	33	27	25	25	25
compas	(11	1155)	6	77	34	39	17	8	16	20	17	15	183	37	92	66	43	12	60	27
contraceptive	(9	1425)	6	99	49	50	8	2	20	60	37	17	385	48	193	27	32	12	66	21
dermatology	(34	366)	6	33	90	17	23	3	16	33	21	7	17	95	9	22	0	14	20	17
divorce	(54	150)	5	15	90	8	50	19	20	33	24	2	5	96	3	33	16	50	50	50
german	(21	1000)	6	25	61	13	38	10	20	40	29	10	99	72	50	46	13	12	40	22
heart-c	(13	302)	6	43	65	22	36	18	20	33	22	4	15	75	8	87	81	25	50	34
heart-h	(13	293)	6	37	59	19	31	4	20	40	24	8	25	77	13	61	60	20	50	32
kr-vs-kp	(36	3196)	6	49	96	25	80	75	16	60	33	13	67	99	34	79	43	7	70	35
lending	(9	5082)	6	45	73	23	73	80	16	50	25	14	507	65	254	69	80	12	75	25
letter	(16	18668)	6	127	58	64	1	0	20	20	20	46	4857	68	2429	6	7	6	25	9
lymphography	(18	148)	6	61	76	31	35	25	16	33	21	6	21	86	11	9	0	16	16	16
mortality	(118	13442)	6	111	74	56	8	14	16	20	17	26	865	76	433	61	61	7	54	19
mushroom	(22	8124)	6	39	100	20	80	44	16	33	24	5	23	100	12	50	31	20	40	25
pendigits	(16	10992)	6	121	88	61	0	0	-	-	-	38	937	85	469	25	86	6	25	11
promoters	(58	106)	1	3	90	2	0	0	-	-	-	3	9	81	5	20	14	33	33	33
recidivism	(15	3998)	6	105	61	53	28	22	16	33	18	15	611	51	306	53	38	9	44	16
seismic_bumps	(18	2578)	6	37	89	19	42	19	20	33	24	8	39	93	20	60	79	20	60	42
shuttle	(9	58000)	6	63	99	32	28	7	20	33	23	23	159	99	80	33	9	14	50	30
soybean	(35	623)	6	63	88	32	9	5	25	25	25	16	71	89	36	22	1	9	12	10
spambase	(57	4210)	6	63	75	32	37	12	16	33	19	15	143	91	72	76	98	7	58	25
spect	(22	228)	6	45	82	23	60	51	20	50	35	6	15	86	8	87	98	50	83	65
splice	(2	3178)	3	7	50	4	0	0	-	-	-	88	177	55	89	0	0	-	-	-

Questions on explaining DTs?

Background \& contribution

Classification problems: $\mathcal{K}=\{\boxplus, \boxminus\}$
Features \& feature space: $\mathcal{F}=\{1, \ldots, n\}, \quad \mathbb{F}$
Classifiers:
NBCs \& LCs

Background \& contribution

Classification problems: $\mathcal{K}=\{\boxplus, \boxminus\}$
Features \& feature space: $\mathcal{F}=\{1, \ldots, n\}, \quad \mathbb{F}$
Classifiers:
Goal:
NBCs \& LCs
PI-explanations
[SCD18, INM19a]

Example

$$
x_{1}, x_{2} \in\{0,1,2\} \quad \text { Instance: } \mathbf{a}=(2,0), \quad \text { Literals: }\left(x_{1}=2\right) \wedge\left(x_{2}=0\right)
$$

Background \& contribution

Classification problems: $\quad \mathcal{K}=\{\boxplus, \boxminus\}$
Features \& feature space: $\mathcal{F}=\{1, \ldots, n\}, \quad \mathbb{F}$
Classifiers:
Goal:
NBCs \& LCs
PI-explanations
[SCD18, INM19a]

Example

$x_{1}, x_{2} \in\{0,1,2\}$	Instance: $\mathbf{a}=(2,0), \quad$ Literals: $\left(x_{1}=2\right) \wedge\left(x_{2}=0\right)$
Predict \boxplus if:	$2 x_{1}-x_{2}>1$
Predict \boxminus if:	$2 x_{1}-x_{2} \leqslant 1$

Background \& contribution

Classification problems: $\mathcal{K}=\{\boxplus, \boxminus\}$
Features \& feature space: $\mathcal{F}=\{1, \ldots, n\}, \quad \mathbb{F}$
Classifiers:
Goal:
NBCs \& LCs
PI-explanations
[SCD18, INM19a]

Example
$x_{1}, x_{2} \in\{0,1,2\} \quad$ Instance: $\mathbf{a}=(2,0), \quad$ Literals: $\left(x_{1}=2\right) \wedge\left(x_{2}=0\right)$
Predict \boxplus if: $\quad 2 x_{1}-x_{2}>1$
Predict \boxminus if: $\quad 2 x_{1}-x_{2} \leqslant 1$
Prediction w/ $\mathbf{a}=(2,0): \quad$:

Background \＆contribution

Classification problems： $\mathcal{K}=\{\boxplus, \boxminus\}$
Features \＆feature space： $\mathcal{F}=\{1, \ldots, n\}, \quad \mathbb{F}$
Classifiers：
Goal：
NBCs \＆LCs
PI－explanations
［SCO18，INM M9a］

Example
$x_{1}, x_{2} \in\{0,1,2\} \quad$ Instance： $\mathbf{a}=(2,0), \quad$ Literals：$\left(x_{1}=2\right) \wedge\left(x_{2}=0\right)$
Predict $⿴ 囗 十$ if：
$2 x_{1}-x_{2}>1$
Predict \boxminus if：
$2 x_{1}-x_{2} \leqslant 1$
Prediction w／ $\mathbf{a}=(2,0)$ ：
PI－explanation：
$\left\{\left(x_{1}=2\right)\right\}$ ，i．e．$\left(x_{2}=0\right)$ is irrelevant for prediction

Background \＆contribution

Classification problems： $\mathcal{K}=\{\boxplus, \boxminus\}$
Features \＆feature space： $\mathcal{F}=\{1, \ldots, n\}$ ，

Classifiers：
Goal：

Example

$x_{1}, x_{2} \in\{0,1,2\}$
Predict $⿴ 囗 十$ if：
Predict \boxminus if：
Prediction w／ $\mathbf{a}=(2,0)$ ：
PI－explanation：

Instance： $\mathbf{a}=(2,0), \quad$ Literals：$\left(x_{1}=2\right) \wedge\left(x_{2}=0\right)$
$2 x_{1}-x_{2}>1$
$2 x_{1}-x_{2} \leqslant 1$
田
$\left\{\left(x_{1}=2\right)\right\}$ ，i．e．$\left(x_{2}=0\right)$ is irrelevant for prediction

Recap PI－explanation：minimal set of literals sufficient for prediction

Background \& contribution - outline

```
Classification problems: }\mathcal{K}={\boxplus,\boxminus
Features & feature space: \mathcal{F}={1,\ldots,n}, \mathbb{F}
Classifiers: NBCs & LCs
Goal:
PI-explanations


\section*{Key concepts \& outcomes - NBCs \& IPr}


NBC classifier (def): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}(\operatorname{Pr}(c \mid \mathbf{e}))\)

\section*{Key concepts \& outcomes - NBCs \& IPr}


NBC classifier (def): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}(\operatorname{Pr}(c \mid \mathbf{e}))=\operatorname{argmax}_{c \in \mathcal{K}}\left(\operatorname{Pr}(c) \times \prod_{i} \operatorname{Pr}\left(e_{i} \mid c\right)\right)\)

\section*{Key concepts \& outcomes - NBCs \& IPr}


NBC classifier (def): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}(\operatorname{Pr}(c \mid \mathbf{e}))=\operatorname{argmax}_{c \in \mathcal{K}}\left(\operatorname{Pr}(c) \times \prod_{i} \operatorname{Pr}\left(e_{i} \mid c\right)\right)\)
NBC classifier (alt): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left((\mathbb{T}+\log \operatorname{Pr}(c))+\sum_{i}\left(\mathbb{T}+\log \operatorname{Pr}\left(e_{i} \mid c\right)\right)\right)\)

\section*{Key concepts \& outcomes - NBCs \& IPr}


NBC classifier (def): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}(\operatorname{Pr}(c \mid \mathbf{e}))=\operatorname{argmax}_{c \in \mathcal{K}}\left(\operatorname{Pr}(c) \times \prod_{i} \operatorname{Pr}\left(e_{i} \mid c\right)\right)\)
NBC classifier (alt): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left((\mathbb{T}+\log \operatorname{Pr}(c))+\sum_{i}\left(\mathbb{T}+\log \operatorname{Pr}\left(e_{i} \mid c\right)\right)\right)\)
Using oper. \(\operatorname{lPr}(\cdot): \quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}(\operatorname{lPr}(c \mid \mathbf{e}))=\operatorname{argmax}_{c \in \mathcal{K}}\left((\operatorname{LPr}(c))+\sum_{i}\left(\operatorname{LPr}\left(e_{i} \mid c\right)\right)\right)\)

\section*{Key concepts \& outcomes - working with IPr}

\begin{tabular}{|c|ccccc|c|}
\hline \(\mathbf{a}=(1,0,1,0)\) & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}(\boxplus \mid \mathbf{a})\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.95 & 0.95 & 0.02 & 0.80 & \\
\(\operatorname{Pr}(\cdot)\) & 1.70 & 3.95 & 3.95 & 0.09 & 3.78 & 13.47 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|c|}
\hline \(\mathbf{a}=(1,0,1,0)\) & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}(\boxminus \mid \mathbf{a})\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.03 & 0.05 & 0.34 & 0.25 & \\
\(\operatorname{Pr}(\cdot)\) & 3.89 & 0.49 & 1.00 & 2.92 & 2.61 & 10.91 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - working with IPr}


Pick class \(\boxplus\) !
\begin{tabular}{|c|ccccc|c|}
\hline \(\mathbf{a}=(1,0,1,0)\) & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}(\boxplus \mid \mathbf{a})\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.95 & 0.95 & 0.02 & 0.80 & \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 3.95 & 3.95 & 0.09 & 3.78 & 13.47 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|c|}
\hline \(\mathbf{a}=(1,0,1,0)\) & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}(\boxminus \mid \mathbf{a})\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.03 & 0.05 & 0.34 & 0.25 & \\
\(\operatorname{Pr}(\cdot)\) & 3.89 & 0.49 & 1.00 & 2.92 & 2.61 & 10.91 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - XLCs}


NBC classifier (def): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left(\operatorname{Pr}(c) \times \prod_{i} \operatorname{Pr}\left(e_{i} \mid c\right)\right)\)
NBC classifier (alt): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left((\mathbb{T}+\log \operatorname{Pr}(c))+\sum_{i}\left(\mathbb{T}+\log \operatorname{Pr}\left(e_{i} \mid c\right)\right)\right)\)
Using oper. \(\operatorname{LPr}(\cdot): \quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left((\operatorname{lPr}(c))+\sum_{i}\left(\operatorname{LPr}\left(e_{i} \mid c\right)\right)\right)\)

XLC classifier:
\[
\nu(\mathbf{e}) \triangleq w_{0}+\sum_{i \in \mathcal{R}} w_{i} e_{i}+\sum_{j \in \mathcal{C}} \sigma\left(e_{j}, v_{j}^{1}, v_{j}^{2}, \ldots, v_{j}^{d_{j}}\right)
\]

\section*{Key concepts \& outcomes - XLCs}

\begin{tabular}{|c|c|}
\hline\(G\) & \(\operatorname{Pr}\left(R_{4} \mid G\right)\) \\
\hline\(\boxplus\) & 0.20 \\
\hline\(\boxminus\) & 0.75 \\
\hline
\end{tabular}

NBC classifier (def): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left(\operatorname{Pr}(c) \times \prod_{i} \operatorname{Pr}\left(e_{i} \mid c\right)\right)\)
NBC classifier (alt): \(\quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left((\mathbb{T}+\log \operatorname{Pr}(c))+\sum_{i}\left(\mathbb{T}+\log \operatorname{Pr}\left(e_{i} \mid c\right)\right)\right)\)
Using oper. \(\operatorname{LPr}(\cdot): \quad \tau(\mathbf{e})=\operatorname{argmax}_{c \in \mathcal{K}}\left((\operatorname{Pr}(c))+\sum_{i}\left(\operatorname{lPr}\left(e_{i} \mid c\right)\right)\right)\)

XLC classifier:
\[
\nu(\mathbf{e}) \triangleq w_{0}+\sum_{i \in \mathcal{R}} w_{i} e_{i}+\sum_{j \in \mathcal{C}} \sigma\left(e_{j}, v_{j}^{1}, v_{j}^{2}, \ldots, v_{j}^{d_{j}}\right)
\]

\section*{Key concepts \& outcomes - NBC to XLC}


Eliminate argmax: \(\quad \operatorname{Pr}(\boxplus)-\operatorname{Pr}(\boxminus)+\)
\[
\begin{aligned}
& \sum_{i=1}^{n}\left(\operatorname{lPr}\left(\neg e_{j} \mid \boxplus\right)-\mid \operatorname{Pr}\left(\neg e_{i} \mid \boxminus\right)\right) \neg e_{i}+ \\
& \sum_{i=1}^{n}\left(\operatorname{lPr}\left(e_{i} \mid \boxplus\right)-\mid \operatorname{Pr}\left(e_{i} \mid \boxminus\right)\right) e_{i}>\mathbf{0}
\end{aligned}
\]

\section*{Key concepts \& outcomes - NBC to XLC}


Eliminate argmax: \(\quad \operatorname{Pr}(\boxplus)-\operatorname{Pr}(\boxminus)+\)
\[
\begin{aligned}
& \sum_{i=1}^{n}\left(\operatorname{PPr}\left(\neg e_{i} \mid \boxplus\right)-\operatorname{|Pr}\left(\neg e_{i} \mid \boxminus\right)\right) \neg e_{i}+ \\
& \sum_{i=1}^{n}\left(\operatorname{lPr}\left(e_{i} \mid \boxplus\right)-\operatorname{Pr}\left(e_{i} \mid \boxminus\right)\right) e_{i}>\mathbf{0}
\end{aligned}
\]

Mapping to XLC:
\[
\begin{aligned}
& w_{0} \triangleq \mid \operatorname{Pr}(\boxplus)-\operatorname{Pr}(\boxminus) \\
& v_{j}^{1} \triangleq\left|\operatorname{Pr}\left(\neg e_{j} \mid \boxplus\right)-\right| \operatorname{Pr}\left(\neg e_{j} \mid \boxminus\right) \\
& v_{j}^{2} \triangleq\left|\operatorname{Pr}\left(e_{j} \mid \boxplus\right)-\right| \operatorname{Pr}\left(e_{j} \mid \boxminus\right)
\end{aligned}
\]

\section*{Key concepts \& outcomes - example reduction}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{IPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|cc|cc|cc|}
\hline\(W_{0}\) & \(v_{1}^{1}\) & \(v_{1}^{2}\) & \(v_{2}^{1}\) & \(v_{2}^{2}\) & \(v_{3}^{1}\) & \(v_{3}^{2}\) & \(v_{4}^{1}\) & \(v_{4}^{2}\) \\
\hline-2.19 & -2.97 & 3.46 & 2.95 & -2.95 & 0.4 & -2.83 & 1.17 & -1.32 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - minding the gap}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Gap value:
\[
\Gamma^{a} \triangleq \nu(\mathbf{a})=w_{0}+\sum_{j \in \mathcal{C}} \sigma\left(a_{j}, v_{j}^{1}, v_{j}^{2}, \ldots, v_{i}^{d_{j}}\right)>\mathbf{0}
\]

\section*{Key concepts \& outcomes - minding the gap}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Gap value:
\[
\begin{aligned}
& \Gamma^{a} \triangleq \nu(\mathbf{a})=W_{0}+\sum_{j \in \mathcal{C}} \sigma\left(a_{j}, v_{j}^{1}, v_{j}^{2}, \ldots, v_{i}^{d_{j}}\right)>\mathbf{0} \\
& \Gamma^{\omega} \triangleq W_{0}+\sum_{j \in \mathcal{C}} v_{j}^{\omega}<\mathbf{0}
\end{aligned}
\]

Worst-case gap:

\section*{Key concepts \& outcomes - minding the gap}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Gap value:
where,
\[
\begin{aligned}
& \Gamma^{a} \triangleq \nu(\mathbf{a})=w_{0}+\sum_{j \in \mathcal{C}} \sigma\left(a_{j}, v_{j}^{1}, v_{j}^{2}, \ldots, v_{i}^{d_{j}}\right)>\mathbf{0} \\
& \Gamma^{\omega} \triangleq w_{0}+\sum_{j \in \mathcal{C}} v_{j}^{\omega}<\mathbf{0} \\
& \Gamma^{\omega}=w_{0}+\sum_{j \in \mathcal{C}} v_{j}^{a_{j}}-\sum_{j \in \mathcal{C}}\left(v_{j}^{a_{j}}-v_{j}^{\omega}\right)=\Gamma^{a}-\sum_{j \in \mathcal{C}} \delta_{j}=-\Phi \\
& \delta_{j} \triangleq v_{j}^{a_{j}}-v_{j}^{\omega}=v_{j}^{a_{j}}-\min \left\{v_{j}^{1}, v_{j}^{2}, \ldots\right\}
\end{aligned}
\]

Worst-case gap:
Relate \(\Gamma^{a}\) and \(\Gamma^{\omega}\) :

\section*{Key concepts \& outcomes - minding the gap}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{IPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Gap value:
\[
\begin{aligned}
& \Gamma^{a} \triangleq \nu(\mathbf{a})=w_{0}+\sum_{j \in \mathcal{C}} \sigma\left(a_{j}, v_{j}^{1}, v_{j}^{2}, \ldots, v_{i}^{d_{j}}\right)>\mathbf{0} \\
& \Gamma^{\omega} \triangleq w_{0}+\sum_{j \in \mathcal{C}} v_{j}^{\omega}<\mathbf{0} \\
& \Gamma^{\omega}=w_{0}+\sum_{j \in \mathcal{C}} v_{j}^{a_{j}}-\sum_{j \in \mathcal{C}}\left(v_{j}^{a_{j}}-v_{j}^{\omega}\right)=\Gamma^{a}-\sum_{j \in \mathcal{C}} \delta_{j}=-\Phi \\
& \delta_{j} \triangleq v_{j}^{a_{j}}-v_{j}^{\omega}=v_{j}^{a_{j}}-\min \left\{v_{j}^{1}, v_{j}^{2}, \ldots\right\}
\end{aligned}
\]

Worst-case gap:
Relate \(\Gamma^{a}\) and \(\Gamma^{\omega}\) :
where,
Worst-case, given some min. \(\mathcal{P}: \quad w_{0}+\sum_{j \in \mathcal{P}} v_{j}^{a_{j}}+\sum_{j \notin \mathcal{P}} v_{j}^{\omega}=-\Phi+\sum_{j \in \mathcal{P}} \delta_{j}>0\)

\section*{Key concepts \& outcomes - computing \(\delta\) 's}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|cc|cc|cc|}
\hline\(w_{0}\) & \(v_{1}^{1}\) & \(v_{1}^{2}\) & \(v_{2}^{1}\) & \(v_{2}^{2}\) & \(v_{3}^{1}\) & \(v_{3}^{2}\) & \(v_{4}^{1}\) & \(v_{4}^{2}\) \\
\hline-2.19 & -2.97 & 3.46 & 2.95 & -2.95 & 0.4 & -2.83 & 1.17 & -1.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|cccc|c|}
\hline\(\Gamma^{a}\) & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{3}\) & \(\delta_{4}\) & \(\Phi=-\Gamma^{\omega}\) \\
\hline 2.56 & 6.43 & 5.90 & 0 & 2.49 & 12.26 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - computing \(\delta\) 's}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|cc|cc|cc|}
\hline\(W_{0}\) & \(v_{1}^{1}\) & \(v_{1}^{2}\) & \(v_{2}^{1}\) & \(v_{2}^{2}\) & \(v_{3}^{1}\) & \(v_{3}^{2}\) & \(v_{4}^{1}\) & \(v_{4}^{2}\) \\
\hline-2.19 & -2.97 & 3.46 & 2.95 & -2.95 & 0.4 & -2.83 & 1.17 & -1.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|cccc|c|}
\hline\(\Gamma^{a}\) & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{3}\) & \(\delta_{4}\) & \(\Phi=-\Gamma^{\omega}\) \\
\hline 2.56 & 6.43 & 5.90 & 0 & 2.49 & 12.26 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - computing \(\delta\) 's}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|cc|cc|cc|}
\hline\(w_{0}\) & \(v_{1}^{1}\) & \(v_{1}^{2}\) & \(v_{2}^{1}\) & \(v_{2}^{2}\) & \(v_{3}^{1}\) & \(v_{3}^{2}\) & \(v_{4}^{1}\) & \(v_{4}^{2}\) \\
\hline-2.19 & -2.97 & 3.46 & 2.95 & -2.95 & 0.4 & -2.83 & 1.17 & -1.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|cccc|c|}
\hline\(\Gamma^{a}\) & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{3}\) & \(\delta_{4}\) & \(\Phi=-\Gamma^{\omega}\) \\
\hline 2.56 & 6.43 & 5.90 & 0 & 2.49 & 12.26 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - computing \(\delta\) 's}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}
\begin{tabular}{|c|cc|cc|cc|cc|}
\hline\(W_{0}\) & \(v_{1}^{1}\) & \(v_{1}^{2}\) & \(v_{2}^{1}\) & \(v_{2}^{2}\) & \(v_{3}^{1}\) & \(v_{3}^{2}\) & \(v_{4}^{1}\) & \(v_{4}^{2}\) \\
\hline-2.19 & -2.97 & 3.46 & 2.95 & -2.95 & 0.4 & -2.83 & 1.17 & -1.32 \\
\hline
\end{tabular}
\begin{tabular}{|c|cccc|c|}
\hline\(\Gamma^{a}\) & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{3}\) & \(\delta_{4}\) & \(\Phi=-\Gamma^{\omega}\) \\
\hline 2.56 & 6.43 & 5.90 & 0 & 2.49 & 12.26 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - 0-1 ILP}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{IPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Optimization problem:
\[
\begin{array}{ll}
\min & \sum_{i=1}^{n} p_{i} \\
\text { s.t. } & \sum_{i=1}^{n} \delta_{i} p_{i}>\Phi \\
& p_{i} \in\{0,1\}
\end{array}
\]

\section*{Key concepts \& outcomes - 0-1 ILP}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{LPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Optimization problem:


\section*{Key concepts \& outcomes - 0-1 ILP}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxplus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxplus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxplus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.10 & 0.05 & 0.95 & 0.95 & 0.05 & 0.98 & 0.02 & 0.80 & 0.20 \\
\(\operatorname{lPr}(\cdot)\) & 1.70 & 1.00 & 3.95 & 3.95 & 1.00 & 3.98 & 0.09 & 3.78 & 2.39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|cc|cc|cc|cc|}
\hline & \(\operatorname{Pr}(\boxminus)\) & \(\operatorname{Pr}\left(\neg r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{1} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{2} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{3} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(\neg r_{4} \mid \boxminus\right)\) & \(\operatorname{Pr}\left(r_{4} \mid \boxminus\right)\) \\
\hline \(\operatorname{Pr}(\cdot)\) & 0.90 & 0.97 & 0.03 & 0.05 & 0.95 & 0.66 & 0.34 & 0.25 & 0.75 \\
\(\operatorname{IPr}(\cdot)\) & 3.89 & 3.97 & 0.49 & 1.00 & 3.95 & 3.58 & 2.92 & 2.61 & 3.71 \\
\hline
\end{tabular}

Optimization problem:
Can enumerate min. sols w/ log-linear delay
\(\min \quad \sum_{i=1}^{n} p_{i}\)
s.t. \(\quad \sum_{i=1}^{n} \delta_{i} p_{i}>\Phi\)
\(p_{i} \in\{0,1\}\)
Special case of knapsack;
can solve in log-linear time

\section*{Key concepts \& outcomes - finding one PI-explanation}

\begin{tabular}{|c|cccc|c|}
\hline & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{4}\) & \(\delta_{3}\) & \\
\hline Sorted & 6.43 & 5.90 & 2.49 & 0 & \(\Phi=12.26\) \\
\hline Sum & & & & & 0 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - finding one PI-explanation}

\begin{tabular}{|c|cccc|c|}
\hline & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{4}\) & \(\delta_{3}\) & \\
\hline Sorted & 6.43 & 5.90 & 2.49 & 0 & \(\Phi=12.26\) \\
\hline Sum & 6.43 & & & & 6.43 \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - finding one PI-explanation}

\begin{tabular}{|c|cccc|l|}
\hline & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{4}\) & \(\delta_{3}\) & \\
\hline Sorted & 6.43 & 5.90 & 2.49 & 0 & \(\Phi=12.26\) \\
\hline Sum & 6.43 & 12.33 & & & \(12.33>\Phi!\) \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - finding one PI-explanation}

\begin{tabular}{|c|cccc|l|}
\hline & \(\delta_{1}\) & \(\delta_{2}\) & \(\delta_{4}\) & \(\delta_{3}\) & \\
\hline Sorted & 6.43 & 5.90 & 2.49 & 0 & \(\Phi=12.26\) \\
\hline Sum & 6.43 & 12.33 & - & - & \(12.33>\Phi!\) \\
\hline
\end{tabular}

\section*{Key concepts \& outcomes - finding one PI-explanation}


\section*{Overview of experimental results}

(a) Raw performance of XPXLC

(b) Performance of STEP (with MOS \& TOS)

(c) XPXLC vs STEP (no comp. time)

Questions on explaining NBCs \& XLCs?

\section*{Outline}

\section*{Formal Explanations}

\section*{Assessing Heuristic Explanations}

Tractable Explanations

Explanations vs. Adversarial Examples

\section*{Overview}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions

\section*{Overview}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches

\section*{Overview}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPS and AEs be somehow related?

\section*{Overview}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPS and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive

\section*{Overview}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPS and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive
- We proposed a (first) link between XPs and AEs

\section*{Overview}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPs and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive
- We proposed a (first) link between XPs and AEs
- The work exploits hitting set duality, first studied in model-based diagnosis

\section*{A well-known example}
[RN10]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Example} & \multicolumn{10}{|c|}{Input Attributes} & \multirow[t]{2}{*}{\begin{tabular}{l}
Goal \\
WillWait
\end{tabular}} \\
\hline & Alt & Bar & Fri & Hun & Pat & Price & Rain & Res & Type & Est & \\
\hline \(x_{1}\) & Yes & No & No & Yes & Some & \$\$\$ & No & Yes & French & 0-10 & \(y_{1}=\mathrm{Yes}\) \\
\hline \(x_{2}\) & Yes & No & No & Yes & Full & \$ & No & No & Thai & 30-60 & \(y_{2}=\mathrm{No}\) \\
\hline \(x_{3}\) & No & Yes & No & No & Some & \$ & No & No & Burger & 0-10 & \(y_{3}=\mathrm{Yes}\) \\
\hline \(x_{4}\) & Yes & No & Yes & Yes & Full & \$ & Yes & No & Thai & 10-30 & \(y_{4}=Y \mathrm{es}\) \\
\hline \({ }^{5}\) & Yes & No & Yes & No & Full & \$\$\$ & No & Yes & French & >60 & \(y_{5}=\mathrm{No}\) \\
\hline \(\chi_{6}\) & No & Yes & No & Yes & Some & \$\$ & Yes & Yes & Italian & 0-10 & \(y_{6}=\mathrm{Yes}\) \\
\hline \(x_{7}\) & No & Yes & No & No & None & \$ & Yes & No & Burger & 0-10 & \(y_{7}=\mathrm{No}\) \\
\hline \(x_{8}\) & No & No & No & Yes & Some & \$\$ & Yes & Yes & Thai & 0-10 & \(y_{8}=\mathrm{Yes}\) \\
\hline \(\chi_{9}\) & No & Yes & Yes & No & Full & \$ & Yes & No & Burger & >60 & \(y_{9}=\mathrm{No}\) \\
\hline \(x_{10}\) & Yes & Yes & Yes & Yes & Full & \$\$\$ & No & Yes & Italian & 10-30 & \(y_{10}=\mathrm{No}\) \\
\hline \(\chi_{11}\) & No & No & No & No & None & \$ & No & No & Thai & 0-10 & \(y_{11}=N_{0}\) \\
\hline \(\mathrm{X}_{12}\) & Yes & Yes & Yes & Yes & Full & \$ & No & No & Burger & 30-60 & \(y_{12}=\mathrm{Yes}\) \\
\hline
\end{tabular}

\section*{A well-known example (Cont.)}
- 10 features:
\{A(Iternate), B(ar), W(eekend), H(ungry), Pa(trons), \(\operatorname{Pr}(\) ice \(), \operatorname{Ra}(i n), \operatorname{Re}(\) serv.), T(ype), E(stim.) \}
- Example instance ( \(x_{1}\), with outcome \(\left.y_{1}=Y e s\right)\) :
\[
\{\mathrm{A}, \neg \mathrm{~B}, \neg \mathrm{~W}, \mathrm{H},(\mathrm{~Pa}=\text { Some }),(\operatorname{Pr}=\$ \$ \$), \neg \operatorname{Ra}, \operatorname{Re},(\mathrm{T}=\text { French }),(\mathrm{E}=0-10)\}
\]
- A possible decision set (obtained with some off-the-shelf tool):
\[
\begin{array}{lll}
\text { IF } & (\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60) & \text { THEN } \\
\text { IF } & (\text { Wait }=\text { Yes }) \\
\text { IF } \wedge \neg(\mathrm{Pr}=\$ \$ \$) \wedge \neg(\mathrm{E}=>60) & \text { THEN } & (\text { Wait }=\text { Yes }) \\
\text { IF } & \text { W } \wedge \neg(\mathrm{Pa}=\text { Some }) & \text { THEN } \\
\text { (Wait }=\text { No }) \\
\text { IF } \quad(\mathrm{E}=>60) & \text { THEN } & \text { (Wait }=\mathrm{No}) \\
\text { IF } \neg(\mathrm{Pa}=\text { Some }) \wedge(\operatorname{Pr}=\$ \$ \$) & \text { THEN } & (\text { Wait }=\mathrm{No})
\end{array}
\]

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \models(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \models(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \models(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:
\[
(\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60)
\]

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:
\[
(\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60)
\]
- Due to (R5), a counterexample is:
\[
\neg(\mathrm{Pa}=\text { Some }) \wedge(\mathrm{Pr}=\$ \$ \$)
\]

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:
\[
(\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60)
\]
- Due to (R5), a counterexample is:
\[
\neg(\mathrm{Pa}=\text { Some }) \wedge(\mathrm{Pr}=\$ \$ \$)
\]
- XP \(\mathcal{S}_{1}=\{(\mathrm{Pa}=\) Some \(), \neg(\mathrm{E}=>60)\}\) breaks CEx \(\mathcal{S}_{2}=\{\neg(\mathrm{Pa}=\) Some \(),(\mathrm{Pr}=\$ \$ \$)\}\) and vice-versa

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx
- Each CEx breaks every XP

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx
- Each CEx breaks every XP
\(\therefore\) XPS can be computed from all CEx's (by HSD) and vice-versa

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx
- Each CEx breaks every XP
\(\therefore\) XPs can be computed from all CEX'S (by HSD) and vice-versa
2. Given instance \(\mathcal{I}\), an AE can be computed from closest CEX

\section*{Revisiting the example}
- Restaurant dataset
- ML model is decision set (shown earlier)
- Prediction is (Wait \(=\) Yes)
- Global explanations:
1. \((\mathrm{Pa}=\) Some \() \wedge \neg(E=>60)\)
2. \(\mathrm{W} \wedge \neg(\mathrm{Pr}=\$ \$ \$) \wedge \neg(\mathrm{E}=>60)\)
- Counterexamples:
1. \(\neg \mathrm{W} \wedge \neg(\mathrm{Pa}=\) Some \()\)
2. \((E=>60)\)
3. \(\neg(\mathrm{Pa}=\) Some \() \wedge(\mathrm{Pr}=\$ \$ \$)\)
- The XP's break the CEx's and vice-versa

\section*{Questions for part 2?}

\section*{Part 3}

Fairness

\section*{Outline}

Understanding fairness

\section*{Fairness Through Unawareness}

\section*{Relating Fairness with Explanations}

\section*{Learning Fair Models}

\section*{Some questions regarding fairness}
-What should be the criterion for fairness of a model (a classifier)?
-What should be the criterion for dataset bias?
-What should be the criterion for fairness of a particular decision?
- How to learn a fair model from biased data?

\section*{Basic definitions}
- Classifier: boolean function \(\varphi(\mathbf{x}, \mathbf{y}) \in\{0,1\}\), where
- x: values of non-protected features (salary, age, ...), and
- y: values of protected features (gender, race, ...).
- Dataset: set of tuples \(\langle\mathbf{x}, \mathbf{y}, c\rangle\) with \(c \in\{0,1\}\)
- Examples:
1. Should a bank approve a loan to a customer?
2. Should a judge release a prisoner on probation?

\section*{Outline}

\section*{Understanding fairness}

Fairness Through Unawareness

\section*{Relating Fairness with Explanations}

\section*{Learning Fair Models}

\section*{Criterion: fairness through unawareness (FTU)}
- FTU: \(\varphi\) is a function only of the non-protected features \(\mathbf{x}\)
- FTU criterion for testing unfairness of model:
\[
\exists \mathrm{x} \exists\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \cdot\left[\mathbf{y}_{1} \neq \mathbf{y}_{2} \wedge \varphi\left(\mathbf{x}, \mathbf{y}_{1}\right) \neq \varphi\left(\mathrm{x}, \mathbf{y}_{2}\right)\right]
\]
E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn't
- Optimisation: only need to test criterion for \(\mathbf{y}_{1}, \mathbf{y}_{2}\) which differ on a single feature

\section*{Criterion: fairness through unawareness (FTU)}
- FTU: \(\varphi\) is a function only of the non-protected features x
- FTU criterion for testing unfairness of model:
\[
\exists \mathrm{x} \exists\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \cdot\left[\mathbf{y}_{1} \neq \mathbf{y}_{2} \wedge \varphi\left(\mathrm{x}, \mathbf{y}_{1}\right) \neq \varphi\left(\mathrm{x}, \mathbf{y}_{2}\right)\right]
\]
E.g. Alice and Bob are identical (same salary, age, ...), Alice is refused a loan but Bob isn't
- Optimisation: only need to test criterion for \(\mathbf{y}_{1}, \mathbf{y}_{2}\) which differ on a single feature

Possible drawbacks of FTU:
- There may be correlations between protected and non-protected features
E.g.: the bank isn't unfair to women, they just don't give loans to people who are pregnant!
- Positive discrimination may be a good thing
E.g.: height restrictions for army recruits are less strict for women

\section*{FTU as a criterion for dataset bias}
- FTU criterion for testing bias of a dataset \(\mathcal{D}\) :
\[
\exists \mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{2} \cdot\left[\mathbf{y}_{1} \neq \mathbf{y}_{2} \wedge\left\langle\mathbf{x}, \mathbf{y}_{1}, 0\right\rangle,\left\langle\mathbf{x}, \mathbf{y}_{2}, 1\right\rangle \in \mathcal{D}\right]
\]
- Criterion can be applied even if \(\mathcal{D}\) is inconsistent (i.e. \(\exists \mathbf{x}, \mathbf{y}[\langle\mathbf{x}, \mathbf{y}, 0\rangle,\langle\mathbf{x}, \mathbf{y}, 1\rangle \in \mathcal{D}]\) )
- Criterion can be tested in linear time (using hash tables) since it is equivalent to: \(\exists \mathrm{x}\) such that
\[
\begin{aligned}
& |\{c: \exists \mathbf{y},\langle\mathbf{x}, \mathbf{y}, c\rangle \in \mathcal{D}\}|>1 \\
& |\{\mathbf{y}: \exists c,\langle\mathbf{x}, \mathbf{y}, c \mid\rangle \in \mathcal{D}\}|>1
\end{aligned}
\]

\section*{Which criterion to pick?}
- Axioms for a dataset-bias criterion:
- Coding-independence: independent of renaming or merging of non-protected features/protected features
- Monotonicity: eliminating unprotected features cannot reduce bias
- Not arbitrary: if all data is identical on the protected features, then unbiased
- Discerning: the criterion is non-trivial
- Simplicity: bias can be proved by exhibiting just 2 examples

Theorem
The only criterion satisfying these 5 axioms is FTU

\section*{Theorem}

There is no criterion which satisfies the 5 axioms and is invariant to the addition of irrelevant features (such as month of birth)

\section*{Outline}

\section*{Understanding fairness}

\section*{Fairness Through Unawareness}

Relating Fairness with Explanations

\section*{Learning Fair Models}

\section*{Local fairness: fairness of a particular decision}
- An example:
- Emma wants to know if she was refused a loan because she is a woman
- The bank uses a simple model: refuse a loan if the client is unemployed or if they are a woman
- This model is clearly unfair with respect to gender, but
- The bank claims that the decision is fair since they refused the loan because Emma is unemployed
- Emma points out there are two possible explanations for the refusal:
(1) she is unemployed, or that
(2) she is a woman,
and hence the decision should be considered unfair

\section*{Local fairness: fairness of a particular decision}
- An example:
- Emma wants to know if she was refused a loan because she is a woman
- The bank uses a simple model: refuse a loan if the client is unemployed or if they are a woman
- This model is clearly unfair with respect to gender, but
- The bank claims that the decision is fair since they refused the loan because Emma is unemployed
- Emma points out there are two possible explanations for the refusal:
(1) she is unemployed, or that
(2) she is a woman,
and hence the decision should be considered unfair
- Who is right?

\section*{Fairness of a particular decision from explanations}
- Recap: a PI-explanation \(\mathcal{E}\) of a prediction \(\varphi(\mathbf{z})=c\) is a subset-minimal set of literals from the literals \(\mathcal{Z}\) of \(\mathbf{z} \in \mathbb{F}\), which entails the prediction \(c\) :
\[
\forall(\mathbf{x} \in \mathbb{F}) \cdot[\mathcal{E}(\mathbf{x}) \rightarrow(\varphi(\mathbf{x})=C)]
\]
- E.g. with \(\varphi(x, y)=x \wedge y\), the decision \(\varphi(0,0)=0\) has 2 PI-explanations: \(\mathcal{E}_{1}=(\neg x)\), and \(\mathcal{E}_{2}=(\neg y)\)
- An explanation is fair if it includes no protected features
- A prediction \(\varphi(\mathbf{z})=c\) is:
- Universally fair: if all of its explanations are fair
- Existentially fair: if at least one of its explanations is fair

\section*{Fairness of a particular decision from explanations}
- Recap: a PI-explanation \(\mathcal{E}\) of a prediction \(\varphi(\mathbf{z})=c\) is a subset-minimal set of literals from the literals \(\mathcal{Z}\) of \(\mathbf{z} \in \mathbb{F}\), which entails the prediction \(c\) :
\[
\forall(\mathbf{x} \in \mathbb{F}) \cdot[\mathcal{E}(\mathbf{x}) \rightarrow(\varphi(\mathbf{x})=c)]
\]
- E.g. with \(\varphi(x, y)=x \wedge y\), the decision \(\varphi(0,0)=0\) has 2 PI-explanations: \(\mathcal{E}_{1}=(\neg x)\), and \(\mathcal{E}_{2}=(\neg y)\)
- An explanation is fair if it includes no protected features
- A prediction \(\varphi(\mathbf{z})=c\) is:
- Universally fair: if all of its explanations are fair
- Existentially fair: if at least one of its explanations is fair
- Back to the example:

Emma's loan refusal decision is existentially fair but not universally fair

\section*{Complexity of checking fairness}
- A model \(\varphi\) is fair iff all its decisions are universally fair
- Checking fairness of a model is in co-NP
- Checking existential fairness of a decision \(\varphi(\mathbf{z})=\mathrm{c}\) is in co-NP
- It can be solved by exhaustive search over only the protected features
- Checking universal fairness of a decision \(\varphi(\mathbf{z})=\mathrm{c}\) is in \(\Pi_{2}^{p}\)

\section*{Outline}

\section*{Understanding fairness}

\section*{Fairness Through Unawareness}

\section*{Relating Fairness with Explanations}

\author{
Learning Fair Models
}

\section*{Learning fair models (from a possibly biased dataset)}

Principle: we impose fairness
- Obs: this is necessarily at the cost of accuracy in the case of a biased dataset

Majority-vote solution: since \(\varphi(\mathbf{x}, \mathbf{y})\) must be a function of \(\mathbf{x}\) only, we maximise accuracy by choosing the most common class \(c\) as \(\mathbf{y}\) varies and \(\mathbf{x}\) remains fixed

Obs: We may further sacrifice accuracy in order to obtain a simple (and hence more human-understandable) model

\section*{Fair decision sets with SAT}

Problem: learn a boolean function \(\varphi\left(x_{1}, \ldots, x_{m}\right)\) from a set of \(n\) examples
- The model \(\varphi\) is necessarily fair since it is a function of non-protected features \(x_{1}, \ldots, x_{m}\) only
- In order to obtain a human-understandable model \(\varphi\), we construct (multiple) K-term DNFs, where \(K\) is a small constant
- We can encode this problem as a SAT instance with variables:
- \(p_{j k}=1\) if the \(k\) th term contains \(x_{j}\)
- \(q_{j k}=1\) if the \(k\) th term contains \(\neg x_{j}\)
- \(v_{i k}=1\) if the \(i\) th example satisfies the \(k\) th term

\section*{Fair decision sets with SAT}
- Clauses of the SAT instance (for 1 DNF):
1. Each positive example satisfies some term ( \(O(n)\) size- \(K\) clauses)
2. No negative example satisfies any term ( \(O(n K\) ) size-m clauses)
3. Constraints coding the semantics of the variables ( \(O(n m K\) ) binary clauses)
where \(n=\) number of examples, \(m=\) number of features, \(K=\) number of terms in the DNF

\section*{Example of the Compas dataset}
- Dataset is derived from the COMPAS algorithm used for scoring a criminal defendant's likelihood of reoffending
- It includes protected features, such as African American, etc.
- Dataset is so biased that the maximum feasible accuracy is only \(69.73 \%\)
- By sacrificing accuracy further to obtain a more interpretable (i.e. smaller) model, we found the following decision set which has \(66.32 \%\) accuracy and is fair:
\begin{tabular}{llr} 
IF \#Priors \(>17.5 \wedge \neg\) score_factor & THEN & Two_yr_Recidivism \\
IF \#Priors \(>17.5 \wedge\) Age \(>45 \wedge\) Misdemeanor & THEN & Two_yr_Recidivism \\
IF \#Priors \(\leqslant 17.5\) & THEN & \(\neg\) Two_yr_Recidivism \\
IF score_factor \(\wedge\) Age \(\leqslant 45\) & THEN & \(\neg\) Two_yr_Recidivism \\
IF score_factor \(\wedge \neg\) Misdemeanor & THEN & \(\neg\) Two_yr_Recidivism
\end{tabular}

\section*{Questions for part 3?}

\section*{Part 4}

\section*{Learning (Interpretable Models)}

\section*{Outline}

\section*{Learning Decision Sets}

\section*{Learning Decision Trees - Glimpse}

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)
- Binary features: \(\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}\)
- Literals: \(f_{r}\) and \(\neg f_{r}\)

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)
- Binary features: \(\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}\)
- Literals: \(f_{r}\) and \(\neg f_{r}\)
- Feature space: \(\mathcal{U} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}\right\}\)

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)
- Binary features: \(\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}\)
- Literals: \(f_{r}\) and \(\neg f_{r}\)
- Feature space: \(\mathcal{U} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}\right\}\)
- Binary classification: \(\mathcal{C}=\left\{c_{0}=0, c_{1}=1\right\}\)
- \(\mathcal{E}\) partitioned into \(\mathcal{E}^{-}\)and \(\mathcal{E}^{+}\)

\section*{Classification problems II}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- \(e_{q} \in \mathcal{E}\) represented as a 2-tuple \(\left(\pi_{q}, \varsigma_{q}\right)\)
- \(\pi_{q} \in \mathcal{U}\) : literals associated with the example
- \(\varsigma_{q} \in\{0,1\}\) is the class of example

\section*{Classification problems II}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- \(e_{q} \in \mathcal{E}\) represented as a 2-tuple \(\left(\pi_{q}, \varsigma_{q}\right)\)
- \(\pi_{q} \in \mathcal{U}\) : literals associated with the example
- \(\varsigma_{q} \in\{0,1\}\) is the class of example
- A literal \(l_{r}\) on a feature \(f_{r}, l_{r} \in\left\{f_{r}, \neg f_{r}\right\}\), discriminates an example \(e_{q}\) if \(\pi_{q}[r]=\neg l_{r}\)
- I.e. feature \(r\) takes the value opposite to the value in the tuple of literals of the example

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Binary features: \(\mathcal{F}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}\)
- \(f_{1} \triangleq V, f_{2} \triangleq C, f_{3} \triangleq M\), and \(f_{4} \triangleq E\)
- \(e_{1}\) is represented by the 2-tuple \(\left(\pi_{1}, \varsigma_{1}\right)\),
- \(\pi_{1}=(\neg \mathrm{V}, \neg \mathrm{C}, \mathrm{M}, \neg \mathrm{E})\)
- \(\varsigma_{1}=0\)
- Literals \(\mathrm{V}, \mathrm{C}, \neg \mathrm{M}\) and E discriminate \(e_{1}\)
\(\cdot \mathcal{U}=\{\mathrm{V}, \neg \mathrm{V}\} \times\{\mathrm{C}, \neg \mathrm{C}\} \times\{\mathrm{M}, \neg \mathrm{M}\} \times\{\mathrm{E}, \neg \mathrm{E}\}\)

\section*{Goal of explainable classification - our take}

Given training data, learn set of DNFs that correctly classify that data, perform suitably well on unseen data, and offer human-understandable explanations for the predictions made

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value
- A rule is a 2-tuple ( \(\pi, \varsigma\) ), with itemset \(\pi \in \mathcal{I}\), and class \(\varsigma \in \mathcal{C}\) Rule ( \(\pi, \varsigma\) ) interpreted as:

IF all specified literals in \(\pi\) are true, THEN pick class \(\varsigma\)

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value
- A rule is a 2 -tuple \((\pi, \varsigma)\), with itemset \(\pi \in \mathcal{I}\), and class \(\varsigma \in \mathcal{C}\) Rule ( \(\pi, \varsigma\) ) interpreted as:

IF all specified literals in \(\pi\) are true, THEN pick class \(\varsigma\)
- A decision set \(\mathbb{S}\) is a finite set of rules - unordered

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value
- A rule is a 2-tuple ( \(\pi, \varsigma\) ), with itemset \(\pi \in \mathcal{I}\), and class \(\varsigma \in \mathcal{C}\) Rule ( \(\pi, \varsigma\) ) interpreted as:
IF all specified literals in \(\pi\) are true, THEN pick class \(\varsigma\)
- A decision set \(\mathbb{S}\) is a finite set of rules - unordered
- A rule of the form \(\mathfrak{D} \triangleq(\varnothing, \varsigma)\) denotes the default rule of a decision set \(\mathbb{S}\)
- Default rule is optional and used only when other rules do not apply on some feature space point

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Rule 1: \(\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), \mathrm{c}_{1}\right)\)
- Meaning: if \(\neg\) Meeting then Hike
- Rule 2: \(\left((\neg \vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right)\)
- Meaning: if \(\neg\) Vacation then \(\neg\) Hike

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Rule 1: \(\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\)
- Meaning: if \(\neg\) Meeting then Hike
- Rule 2: \(\left((\neg \vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right)\)
- Meaning: if \(\neg\) Vacation then \(\neg\) Hike
- Default rule: \(\left(\varnothing, c_{0}\right)\)
- Meaning: if all other rules do not apply, then pick \(\neg\) Hike

\section*{Issue with unordered rules}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\varnothing\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)

\section*{Issue with unordered rules - overlap}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\varnothing\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)
- Two rules \(r_{1}=\left(\pi_{1}, \varsigma_{1}\right)\) and \(r_{2}=\left(\pi_{2}, \varsigma_{2}\right)\) overlap if \(\pi_{1}\) and \(\pi_{2}\) do not clash, i.e.
\[
\pi_{1} \cap \pi_{2} \neq \varnothing
\]
- Can be restricted to some set, e.g. \(\mathcal{E}\)

\section*{Issue with unordered rules - overlap}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\varnothing\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)
- Two rules \(r_{1}=\left(\pi_{1}, \varsigma_{1}\right)\) and \(r_{2}=\left(\pi_{2}, \varsigma_{2}\right)\) overlap if \(\pi_{1}\) and \(\pi_{2}\) do not clash, i.e.
\[
\pi_{1} \cap \pi_{2} \neq \varnothing
\]
- Can be restricted to some set, e.g. \(\mathcal{E}\)
- Forms of overlap:
- \(\oplus\) : overall where rules agree in prediction
- \(\Theta\) : overlap where rules disagree in prediction

\section*{Issue with unordered rules - overlap}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\varnothing\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)
- Two rules \(r_{1}=\left(\pi_{1}, \varsigma_{1}\right)\) and \(r_{2}=\left(\pi_{2}, \varsigma_{2}\right)\) overlap if \(\pi_{1}\) and \(\pi_{2}\) do not clash, i.e.
\[
\pi_{1} \cap \pi_{2} \neq \varnothing
\]
- Can be restricted to some set, e.g. \(\mathcal{E}\)
- Forms of overlap:
- \(\oplus\) : overall where rules agree in prediction
- \(\Theta\) : overlap where rules disagree in prediction
- Our goal:

Minimize number of rules in decision set, and provide guarantees in terms of overlap, namely \(\ominus\)-overlap

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Decision set:
\[
\left\{\left((\neg \mathbf{V}, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right),\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\right\}
\]
- No \(\mathcal{E}^{\ominus \text {-overlap }}\)

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Decision set:
\[
\left\{\left((\neg \mathbf{V}, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right),\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\right\}
\]
- No \(\mathcal{E}^{\ominus \text {-overlap }}\)
- But, there exists overlap in feature space
- \(\ominus\)-overlap for \((\neg \mathrm{V}, \neg \mathrm{C}, \neg \mathrm{M}, \neg \mathrm{E}) \in \mathcal{U} \backslash \mathcal{E}\)

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Decision set:
\[
\left\{\left((\neg \mathfrak{V}, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right),\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\right\}
\]
- No \(\mathcal{E}^{\ominus}\)-overlap
- But, there exists overlap in feature space
- \(\ominus\)-overlap for \((\neg \mathrm{V}, \neg \mathrm{C}, \neg \mathrm{M}, \neg \mathrm{E}) \in \mathcal{U} \backslash \mathcal{E}\)
- However, there exists no \(\mathcal{U}^{\ominus}\)-overlap for decision set:
\[
\left\{\left((\vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{1}\right),\left((\neg \vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right)\right\}
\]

\section*{Succinct explanations}
- If a rule fires, the set of literals represents the explanation for the predicted class
- Explanation is succinct : only the literals in the rule used; independent of example
- For the default class, must pick one falsified literal in every rule that predicts a different class
- Explanation is not succinct : explanation depends on each example
- Obs: Uninteresting to predict \(c_{1}\) as negation of \(c_{0}\) (and vice-versa)
- Explanations also not succinct

\section*{Stating our goals}
- Assumptions:
- Represent \(\mathcal{E}^{-}\)with Boolean function \(E^{0}\)
- True for each example \(\mathcal{E}^{-}\)
- Represent \(\mathcal{E}^{+}\)with Boolean function \(E^{1}\)
- True for each example \(\mathcal{E}^{+}\)
- Also, let \(E^{0} \wedge E^{1} \models \perp\)

\section*{Stating our goals}
- Assumptions:
- Represent \(\mathcal{E}^{-}\)with Boolean function \(E^{0}\)
- True for each example \(\mathcal{E}^{-}\)
- Represent \(\mathcal{E}^{+}\)with Boolean function \(E^{1}\)
- True for each example \(\mathcal{E}^{+}\)
- Also, let \(E^{0} \wedge E^{1} \models \perp\)
- DNF functions to compute:
- \(F^{0}\) for predicting \(c_{0}\), while ensuring \(E^{0} \models F^{0}\)
- \(F^{1}\) for predicting \(c_{1}\), while ensuring \(E^{1} \models F^{1}\)


\section*{An ideal model - MinDS 0}
- \(\mathrm{MinDS}_{0}\) :

Find the smallest DNF representations of Boolean functions \(F^{0}\) and \(F^{1}\), measured in the number of terms, such that:
1. \(E^{0} \models F^{0}\)
2. \(E^{1} \models F^{1}\)
3. \(F^{1} \leftrightarrow F^{0} \models \perp\)
- No \(\mathcal{U}^{\ominus \text {-overlap }}\)

\section*{An ideal model - MinDS0}
- MinDS \(_{0}\) :

Find the smallest DNF representations of Boolean functions \(F^{0}\) and \(F^{1}\), measured in the number of terms, such that:
1. \(E^{0} \models F^{0}\)
2. \(E^{1} \models F^{1}\)
3. \(F^{1} \leftrightarrow F^{0} \models \perp\)
- No \(\mathcal{U}^{\ominus \text {-overlap }}\)
- Obs: MinDS \(_{0}\) ensures succinct explanations
- Computes \(F^{0}\) and \(F^{1}\) (i.e. no negation) and no default rule

\section*{An ideal model - MinDS0}
- MinDS \(_{0}\) :

Find the smallest DNF representations of Boolean functions \(F^{0}\) and \(F^{1}\), measured in the number of terms, such that:
1. \(E^{0} \models F^{0}\)
2. \(E^{1} \models F^{1}\)
3. \(F^{1} \leftrightarrow F^{0} \models \perp\)
- No \(\mathcal{U}^{\ominus \text {-overlap }}\)
- Obs: MinDS \(0_{0}\) ensures succinct explanations
- Computes \(F^{0}\) and \(F^{1}\) (i.e. no negation) and no default rule
- Complexity-wise:
- \(M_{i n D S} \in \Sigma_{2}^{P}\)
- A conjecture: MinDSo hard for \(\Sigma_{2}^{P}\)

\section*{Curbing our expectations I}
- MinDS 4 : Minimize \(F^{0}\), given \(F^{1} \equiv E^{1}\) constant, and such that
1. \(E^{0} \models F^{0}\)
2. \(F^{0} \wedge E^{1} \vDash \perp\)
- No \(\ominus\)-overlap;
- No succinct explanations for \(F^{1}\)

\section*{Curbing our expectations I}
- MinDS \(_{4}\) : Minimize \(F^{0}\), given \(F^{1} \equiv E^{1}\) constant, and such that
1. \(E^{0} \models F^{0}\)
2. \(F^{0} \wedge E^{1} \vDash \perp\)
- No \(\ominus\)-overlap;
- No succinct explanations for \(F^{1}\)
- \(\mathrm{MinDS}_{3}\) : Same as \(\mathrm{MinDS}_{4}\), but target \(F^{1}\) given \(F^{0} \equiv E^{0}\) constant
- Also, no \(\ominus\)-overlap;
- No succinct explanations for \(F^{0}\)

\section*{Curbing our expectations I}
- MinDS \(_{4}\) : Minimize \(F^{0}\), given \(F^{1} \equiv E^{1}\) constant, and such that
1. \(E^{0} \models F^{0}\)
2. \(F^{0} \wedge E^{1} \vDash \perp\)
- No \(\ominus^{-o v e r l a p ; ~}\)
- No succinct explanations for \(F^{1}\)
- \(\mathrm{MinDS}_{3}\) : Same as \(\mathrm{MinDS}_{4}\), but target \(F^{1}\) given \(F^{0} \equiv E^{0}\) constant
- Also, no \(\ominus\)-overlap;
- No succinct explanations for \(F^{0}\)
- MinDS2: Minimize both \(F^{0}\) and \(F^{1}\), such that
1. \(E^{0} \models F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{0} \wedge E^{1} \vDash \perp\)
4. \(F^{1} \wedge E^{0} \models \perp\)
- Also, no \(\mathcal{E}^{\ominus}\)-overlap; but \((\mathcal{U} \backslash \mathcal{E})^{\ominus}\)-overlap may exist
- All explanations succinct

\section*{Curbing our expectations II}
- MinDS \({ }_{1}\) : Minimize both \(F^{0}\) and \(F^{1}\), such that
1. \(E^{0} \models F^{0}\)
2. \(E^{1} \models F^{1}\)
3. \(F^{1} \wedge F^{0} \models \perp\)
- No \(\mathcal{U}^{\ominus \text {-overlap }}\)
- Default rule may be required for points in \(\mathcal{U} \backslash \mathcal{E}\)
- And, default rule explanations not succinct

\section*{Curbing our expectations II}
- MinDS \(1_{1}\) : Minimize both \(F^{0}\) and \(F^{1}\), such that
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{1} \wedge F^{0} \models \perp\)
- No \(\mathcal{U}^{\ominus}\)-overlap
- Default rule may be required for points in \(\mathcal{U} \backslash \mathcal{E}\)
- And, default rule explanations not succinct
- Complexity-wise:
- Decision formulations of \(\mathrm{MinDS}_{1}, \mathrm{MinDS}_{2}, \mathrm{MinDS}_{3}, \mathrm{MinDS}_{4}\) are complete for NP
- In principle, could be solved with MaxSAT
- But no closed MaxSAT models for now

\section*{Computing explainable decision sets}
- Our work:
- Adapted old SAT encodings to MinDS 3 \& MinDS 4
- Developed new SAT encodings for MinDS \& \(_{3}\) MinDS \(_{4}\)
- Developed SAT encodings for MinDS 2 and MinDS1
- Proposed symmetry-breaking constraints (SBPs)

\section*{Computing explainable decision sets}
- Our work:
- Adapted old SAT encodings to MinDS 3 \& MinDS 4
- Developed new SAT encodings for \(\mathrm{MinDS}_{3}\) \& MinDS 4
- Developed SAT encodings for MinDS 2 and MinDS1
- Proposed symmetry-breaking constraints (SBPs)
- Covered in the lecture: SAT encoding for MinDS3

\section*{SAT model for \(\mathrm{MinDS}_{3}\) - overview}
- DNF representation for \(F^{1}\)
- Consider \(N\) terms
- Each term corresponds to a rule

- Allow literals to be associated or not with each rule
- Rules for some class must discriminate examples of other classes
- Every example must be covered by one of the rules for its class

\section*{Boolean variables for \(\mathrm{MinDS}_{3}\)}

- \(s_{j r}\) : whether a literal in feature \(r\) is skipped for rule \(j\)
- \(l_{j r}\) polarity of literal on feature \(r\) for rule \(j\), when the feature is not skipped
- \(d_{j r}^{0}\) : whether feature \(r\) of rule \(j\) discriminates value 0
- \(d_{j r}^{1}\) : whether feature \(r\) of rule \(j\) discriminates value 1
- cr \(_{j q}\) : whether (used) rule \(j\) covers \(e_{q} \in \mathcal{E}^{+}\)

\section*{Constraints for \(\mathrm{MinDS}_{3}\) I}
- Each term must have some literals:
\[
\left(\bigvee_{r=1}^{K} \neg S_{j r}\right) \quad j \in[N]
\]

\section*{Constraints for \(\mathrm{MinDS}_{3}\) I}
- Each term must have some literals:
\[
\left(\bigvee_{r=1}^{K} \neg S_{j r}\right) \quad j \in[N]
\]
- Account for which literals are discriminated by which rules:
\[
\begin{array}{ll}
d_{j r}^{0} \leftrightarrow \neg S_{j r} \wedge l_{j r} & j \in[N] \wedge r \in[K] \\
d_{j r}^{1} \leftrightarrow \neg S_{j r} \wedge \neg l_{j r} & j \in[N] \wedge r \in[K]
\end{array}
\]

\section*{Constraints for \(\mathrm{MinDS}_{3}\) I}
- Each term must have some literals:
\[
\left(\bigvee_{r=1}^{K} \neg s_{j r}\right) \quad j \in[N]
\]
- Account for which literals are discriminated by which rules:
\[
\begin{array}{ll}
d_{j r}^{0} \leftrightarrow \neg S_{j r} \wedge l_{j r} & j \in[N] \wedge r \in[K] \\
d_{j r}^{1} \leftrightarrow \neg S_{j r} \wedge \neg l_{j r} & j \in[N] \wedge r \in[K]
\end{array}
\]
- Discriminate all the negative examples in each term
- \(e_{q} \in \mathcal{E}^{-}\): some negative example
- \(\sigma(r, q)\) : sign of feature \(f_{r}\) for \(e_{q}\)
\[
\left(\bigvee_{r=1}^{K} d_{j, r}^{\sigma(r, q)}\right) \quad j \in[N] \wedge e_{q} \in \mathcal{E}^{-}
\]

\section*{Constraints for \(\mathrm{MinDS}_{3}\) II}
- Each positive example must be covered by some rule
- Define whether a rule covers some specific positive example:
\[
c r_{j q} \leftrightarrow\left(\bigwedge_{r=1}^{K} \neg d_{j, r}^{\sigma(r, q)}\right) \quad j \in[N] \wedge e_{q} \in \mathcal{E}^{+}
\]

\section*{Constraints for \(\mathrm{MinDS}_{3}\) II}
- Each positive example must be covered by some rule
- Define whether a rule covers some specific positive example:
\[
c r_{j q} \leftrightarrow\left(\bigwedge_{r=1}^{K} \neg d_{j, r}^{\sigma(r, q)}\right) \quad j \in[N] \wedge e_{q} \in \mathcal{E}^{+}
\]
- And, each \(e_{q} \in \mathcal{E}^{+}\)must be covered by some rule:
\[
\left(\bigvee_{j=1}^{N} c r_{j q}\right) \quad e_{q} \in \mathcal{E}^{+}
\]

\section*{Constraints for \(\mathrm{MinDS}_{3}\) II}
- Each positive example must be covered by some rule
- Define whether a rule covers some specific positive example:
\[
c r_{j q} \leftrightarrow\left(\bigwedge_{r=1}^{K} \neg d_{j, r}^{\sigma(r, q)}\right) \quad j \in[N] \wedge e_{q} \in \mathcal{E}^{+}
\]
- And, each \(e_{q} \in \mathcal{E}^{+}\)must be covered by some rule:
\[
\left(\bigvee_{j=1}^{N} c r_{j q}\right) \quad e_{q} \in \mathcal{E}^{+}
\]
- The model uses \(\mathcal{O}(N \times M \times K)\) clauses and literals

\section*{Experimental setup \& initial results}
- 49 datasets from the PMLB repository
- Assessment of MinDS \(1, M_{1 n D S}^{2}\) and MP92, w/ and w/o SBPs
- A basic model MP92 developed in the 90s
- We devised SBPs for the MinDS and the MP92 models
- Comparison with (state of the art) IDS
- Heuristic approach, using smooth local search
- Default settings \& additional settings
- All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory, running Ubuntu Linux
- Timeout of 600s and memout of 10 GB

\section*{Experimental setup \& initial results}
- 49 datasets from the PMLB repository
- Assessment of MinDS \({ }_{1}\), MinDS 2 and MP92, w/ and w/o SBPs
- A basic model MP92 developed in the 90s
- We devised SBPs for the MinDS and the MP92 models
- Comparison with (state of the art) IDS
- Heuristic approach, using smooth local search
- Default settings \& additional settings
- All experiments on an Intel Xeon E5-2630 2.60 GHz processor with 64 GB of memory, running Ubuntu Linux
- Timeout of 600 s and memout of 10 GB
\begin{tabular}{cccccccc}
\hline MP92 & MP92+SBP & MinDS \(_{2}\) & MinDS \(_{2}\) +SBP & MinDS \(_{1}\) & MinDS \(_{1}+\) SBP & IDS-supp0.2 & IDS-supp0.5 \\
\hline 42 & 45 & 42 & 45 & 6 & 6 & 0 & 2 \\
\hline
\end{tabular}

\section*{Experimental setup \& initial results}
- 49 datasets from the PMLB repository
- Assessment of MinDS \({ }_{1}\), MinDS 2 and MP92, w/ and w/o SBPs
- A basic model MP92 developed in the 90s
- We devised SBPs for the MinDS and the MP92 models
- Comparison with (state of the art) IDS
- Heuristic approach, using smooth local search
- Default settings \& additional settings
- All experiments on an Intel Xeon E5-2630 2.60 GHz processor with 64 GB of memory, running Ubuntu Linux
- Timeout of 600 s and memout of 10 GB
\begin{tabular}{cccccccc}
\hline MP92 & MP92+SBP & MinDS \(_{2}\) & MinDS \(_{2}+\) SBP & MinDS & MinDS \(_{1}+\) SBP & IDS-supp0.2 & IDS-supp0.5 \\
\hline 42 & 45 & 42 & 45 & 6 & 6 & 0 & 2 \\
\hline
\end{tabular}
- There are recent improvements

\section*{Outline}

\section*{Learning Decision Sets}

Learning Decision Trees - Glimpse

\section*{Propositional encodings for DTs}
- Proposed tight encoding for computing smallest decision tree
- Encoding also serves to pick the structure of the binary tree
- Encoding much tighter (and more general) than earlier work
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAT & Weather & Mouse & Cancer & Car & Income \\
\hline \hline DT2* & 27 K & 3.5 M & 92 G & 842 M & 354 G \\
DT1 & 190 K & 1.2 M & 5.2 M & 4.1 M & 1.2 G \\
\hline
\end{tabular}
- Several recent alternative proposals
- Several approaches outperform our work

\section*{Questions for part 4?}

\section*{Part 5}

\section*{(Comments on) Robustness}

\section*{Validating robustness in NNs}
- Goal: prove properties of ML models
- Some target objective is satisfied
- Some bad state is not reached
- Small-distance adversarial examples are not observed

\section*{Validating robustness in NNs}
- Goal: prove properties of ML models
- Some target objective is satisfied
- Some bad state is not reached
- Small-distance adversarial examples are not observed
- Tradeoffs: soundness vs. completeness vs. both

\section*{Validating robustness in NNs}
- Goal: prove properties of ML models
- Some target objective is satisfied
- Some bad state is not reached
- Small-distance adversarial examples are not observed
- Tradeoffs: soundness vs. completeness vs. both
- Example approach:
- Logic/constraint-based encoding of ML models
- Dedicated engine to reason about NNs: Reluplex

\section*{Conclusions}
- Overview of (our) work at intersection of AR \& ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness

\section*{Conclusions}
- Overview of (our) work at intersection of AR \& ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness
- Work offers (often viable) alternative to heuristic-based solutions
- Fascinating range of research topics
- Exploiting formal methods in offering much-needed rigor to the emerging field of ML

\section*{Conclusions}
- Overview of (our) work at intersection of AR \& ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness
- Work offers (often viable) alternative to heuristic-based solutions
- Fascinating range of research topics
- Exploiting formal methods in offering much-needed rigor to the emerging field of ML
- Many challenges lie ahead:
- Scalability, scalability, ... (often a perception, but ...)
- Adoption, adoption, ... (evidence suggests no alternative, but ...)

\section*{Conclusions}
- Overview of (our) work at intersection of AR \& ML
1. Explainability
2. Learning (interpretable models)
3. Fairness
4. Robustness
- Work offers (often viable) alternative to heuristic-based solutions
- Fascinating range of research topics
- Exploiting formal methods in offering much-needed rigor to the emerging field of ML
- Many challenges lie ahead:
- Scalability, scalability, ... (often a perception, but ...)
- Adoption, adoption, ... (evidence suggests no alternative, but ...)
-Our remit @ ANITI:
To explain, to verify \& to learn ML models
with guarantees of rigor, by using AR tools \& techniques

\section*{Questions?}

Acknowledgment: joint work with M. Cooper, T. Gerspacher, E. Hebrard, A. Ignatiev, I. Izza, N. Narodytska, N. Asher, F. Pereira, M. Siala, et al.


\section*{References i}
[Alp14] Ethem Alpaydin.
Introduction to machine learning.
MIT press, 2014.
[ANS20a] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus.
Learning optimal decision trees using caching branch-and-bound search.
In AAAI, pages 3146-3153, 2020.
[ANS20b] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus.
PyDL8.5: a library for learning optimal decision trees.
In IJCAI, pages 5222-5224, 2020.
[Ave20] Florent Avellaneda.
Efficient inference of optimal decision trees.
In AAAI, pages 3195-3202, 2020.
[BHOO9] Christian Bessiere, Emmanuel Hebrard, and Barry O'Sullivan.
Minimising decision tree size as combinatorial optimisation.
In CP, pages 173-187, 2009.
[Dar20] Adnan Darwiche.
Three modern roles for logic in AI.
In PODS, pages 229-243, 2020.

\section*{References ii}
[dBLSS20] Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu.
On the tractability of SHAP explanations.
CoRR, abs/2009.08634, 2020.
[DH20] Adnan Darwiche and Auguste Hirth.
On the reasons behind decisions.
In ECAI, pages 712-720, 2020.
[EG95] Thomas Eiter and Georg Gottlob.
Identifying the minimal transversals of a hypergraph and related problems.
SIAM J. Comput., 24(6):1278-1304, 1995.
[FJ18] Matteo Fischetti and Jason Jo.
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296-309, 2018.
[HKWW17] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.
Safety verification of deep neural networks.
In CAV, pages 3-29, 2017.
[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer.
Optimal sparse decision trees.
In NeurlPS, pages 7265-7273, 2019.

\section*{References iii}
[HSHH20] Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.
Learning optimal decision trees with MaxSAT and its integration in adaboost.
In IJCAI, pages 1170-1176, 2020.
[ICS+20] Alexey Ignatiev, Martin C. Cooper, Mohamed Siala, Emmanuel Hebrard, and João Marques-Silva.
Towards formal fairness in machine learning.
In CP, pages 846-867, 2020.
[Ign20] Alexey Ignatiev.
Towards trustable explainable AI.
In IJCAI, pages 5154-5158, 2020.
[IIM20] Yacine Izza, Alexey Ignatiev, and Joao Marques-Silva.
On explaining decision trees.
CoRR, abs/2010.11034, 2020.
[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511-1519, 2019.
[INM19b] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeurIPS, pages 15857-15867, 2019.

\section*{References iv}
[INM19c] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On validating, repairing and refining heuristic ML explanations.
CoRR, abs/1907.02509, 2019.
[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and Joao Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, pages 627-645, 2018.
[JM20] Mikolás Janota and António Morgado.
SAT-based encodings for optimal decision trees with explicit paths.
In SAT, pages 501-518, 2020.
[KBD \({ }^{+17] ~ G u y ~ K a t z, ~ C l a r k ~ W . ~ B a r r e t t, ~ D a v i d ~ L . ~ D i l l, ~ K y l e ~ J u l i a n, ~ a n d ~ M y k e l ~ J . ~ K o c h e n d e r f e r . ~}\)
Reluplex: An efficient SMT solver for verifying deep neural networks.
In CAV, pages 97-117, 2017.
[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett. The marabou framework for verification and analysis of deep neural networks.
In CAV, pages 443-452, 2019.

\section*{References v}
[KKRR92] Anil P. Kamath, Narendra Karmarkar, K. G. Ramakrishnan, and Mauricio G. C. Resende. A continuous approach to inductive inference.
Math. Program., 57:215-238, 1992.
[LBL16] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec.
Interpretable decision sets: A joint framework for description and prediction.
In KDD, pages 1675-1684, 2016.
[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765-4774, 2017.
[MGC+20] Joao Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska.
Explaining naive bayes and other linear classifiers with polynomial time and delay.
CoRR, abs/2008.05803, 2020.
Accepted at NeurIPS'20.
[NH10] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann machines.
In ICML, pages 807-814, 2010.

\section*{References vi}
```

[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362-1368, }2018
[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267-278, 2019.
[PM17] David Poole and Alan K. Mackworth.
Artificial Intelligence - Foundations of Computational Agents.
CUP, 2017.
[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57-95, 1987.
[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.
[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
"why should I trust you?": Explaining the predictions of any classifier.
In KDD, pages 1135-1144, 2016.

```

\section*{References vii}
[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527-1535. AAAI Press, 2018.
[SCD18] Andy Shih, Arthur Choi, and Adnan Darwiche.
A symbolic approach to explaining bayesian network classifiers.
In IJCAI, pages 5103-5111, 2018.
[SCD19] Andy Shih, Arthur Choi, and Adnan Darwiche.
Compiling bayesian network classifiers into decision graphs.
In AAAI, pages 7966-7974, 2019.
[SGM \({ }^{+18]}\) Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast and effective robustness certification.
In NeurIPS, pages 10825-10836, 2018.
[VNP \({ }^{+20]}\) Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quimper, and Pierre Schaus.
Learning optimal decision trees using constraint programming.
In IJCAI, pages 4765-4769, 2020.
[VZ19] Sicco Verwer and Yingqian Zhang.
Learning optimal classification trees using a binary linear program formulation.
In AAAI, pages 1625-1632, 2019.

\section*{References viii}
```

[YISB20] Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, and Pierre Le Bodic.
Computing optimal decision sets with SAT.
In CP, pages 952-970, 2020.
[Zho12] Zhi-Hua Zhou.
Ensemble methods: foundations and algorithms.
CRC press, 2012.

```
```

