

Declarative Data Mining

Samir LOUDNI TASC (LS2N – CNRS) – DAPI IMT Atlantique

ACP'2020 GdR IA, RO, and ANITI Autumn School 26/11/2020

... is "the use of sophisticated data analysis tools to **discover** unknown, **valid patterns and relationships** in large datasets"

Data mining:

- Core of KDD
- Search for knowledge in data (regularities or correlations)
- Pattern domain : item-sets, sequences, graphs, etc.
- examples including pattern mining, clustering, association rules, etc.

	g ₁	g 2	g3	g 4					
<i>s</i> ₁	x			х					
<i>s</i> ₂	X	X	х						
<i>s</i> 3		x		х					
<i>S</i> 4	X	X	х						
<i>s</i> 5	X	X		х					
reque	nt pa	ttern	: g 18	32					
association rule : $g_1g_2 ightarrow g_3$									

Finding regularities from transaction databases

Example of Market Basket Data

- Finding regularities in the shopping behavior of customers of supermarkets, on-line shops, etc.
- More specifically:

Find sets of products that are frequently bought together.

- Possible applications of found frequent item sets:
 - Improve arrangement of products in shelves, on a catalog's pages etc.
 - Support cross-selling (suggestion of other products), product bundling.
- Often found patterns are expressed as association rules, for example: **If** a customer buys **bread** and **wine**,

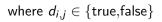
then she/he will probably also buy cheese.

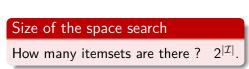
Definition

Given a set of items (or attributes) \mathcal{I} , an <u>itemset</u> X is a subset of items, i.e., $X \subseteq \mathcal{I}$.

Input:

	<i>i</i> 1	i ₂		in
01	$d_{1,1}$	$d_{1,2}$		$d_{1,n}$
<i>o</i> ₂	$d_{2,1}$	<i>d</i> _{2,2}		$d_{2,n}$
÷	÷	÷	·	÷
o _m	$d_{m,1}$	$d_{m,2}$		$d_{m,n}$





Transactional representation of the data

Relational representation: $\mathcal{T} \subseteq \mathcal{O} \times \mathcal{I}$

	i_1	<i>i</i> 2		in
<i>o</i> 1	<i>d</i> _{1,1}	$d_{1,2}$		$d_{1,n}$
<i>o</i> ₂	<i>d</i> _{2,1}	$d_{2,2}$		$d_{2,n}$
: 0 _m	: d _{m,1}	: d _{m,2}	·	: d _{m,n}

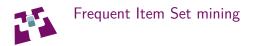
where $d_{i,j} \in {\text{true,false}}$

Transactional representation: ${\mathcal T}$ is an array of subsets of ${\mathcal I}$

t_1
t_2
:
tm

where $t_i \subseteq \mathcal{I}$

Example					
		i_1	i_2	i ₃	t_1 i_1, i_2, i_3
	<i>o</i> ₁	×	×	×	$t_2 i_1, i_2$
	<i>o</i> ₂	×	×		$t_3 \mid i_2$
	<i>o</i> 3		×		$t_4 \mid i_3$
	04			×	



Problem Definition

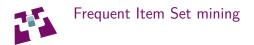
Given the objects in \mathcal{O} described with the Boolean attributes in \mathcal{I} , listing every item set having a frequency above a given threshold $\theta \in \mathbb{N}$.

Input:

	a1	a ₂		an
01	$d_{1,1}$	$d_{1,2}$		$d_{1,n}$
<i>o</i> ₂	d _{2,1}	$d_{2,2}$		$d_{2,n}$
:	:	:	• .	:
		-		
om	$d_{m,1}$	$d_{m,2}$		$d_{m,n}$

where $d_{i,j} \in \{\text{true}, \text{false}\}$

and a minimal frequency $\theta \in \mathbb{N}$.



Problem Definition

Given the objects in \mathcal{O} described with the Boolean attributes in \mathcal{I} , listing every item set having a frequency above a given threshold $\theta \in \mathbb{N}$.

Output: every $X \subseteq \mathcal{I}$ such that there are at least θ objects having all attributes in X.

Specifying a minimal frequency threshold $\theta = 2$ objects (or, equivalently, a minimal relative frequency of 50%).

	a ₁	<i>a</i> ₂	a ₃
<i>o</i> ₁	×	\times	×
<i>o</i> ₂	×	\times	
03		\times	
04			\times

Specifying a minimal frequency threshold $\theta = 2$ objects (or, equivalently, a minimal relative frequency of 50%).

The frequent itemsets are: \emptyset (4), $\{a_1\}$ (2), $\{a_2\}$ (3), $\{a_3\}$ (2) and $\{a_1, a_2\}$ (2).

\mathcal{O}	a1	a ₂	a ₃	a 4	a_5	a 6	a ₇	a ₈	a 9	a_{10}	a_{11}	a ₁₂	a 13	a 14	a_{15}
01	×	×	×	×	×										
02	×	\times	×	×	\times										
03	×	\times	\times	\times	×										
<i>o</i> ₄						\times	\times	\times	\times	×					
05						\times	\times	\times	\times	×					
06						\times	×	×	\times	×					
07											×	×	×	×	×
08											×	\times	\times	×	×

• How many frequent patterns?

\mathcal{O}	aı	a ₂	a ₃	a 4	a_5	a_6	a ₇	a_8	a 9	a_{10}	a_{11}	a ₁₂	a ₁₃	a 14	a_{15}
<i>o</i> ₁	×	×	×	×	×										
02	×	×	×	×	×										
<i>o</i> 3	×	\times	\times	\times	\times										
<i>o</i> 4						\times	\times	×	\times	×					
05						\times	\times	×	\times	×					
06						\times	\times	\times	\times	×					
07											×	×	×	×	\times
08											×	×	×	×	\times

• How many frequent patterns? $1 + (2^5 - 1) \times 3 = 94$ patterns

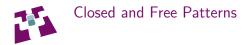
\mathcal{O}	a1	a ₂	a ₃	a 4	a_5	a ₆	a ₇	a_8	a 9	a_{10}	a_{11}	a ₁₂	a 13	<i>a</i> ₁₄	a_{15}
01	×	×	×	×	×										
<i>o</i> ₂	×	\times	×	×	×										
<i>o</i> 3	×	\times	\times	×	×										
04						\times	\times	\times	\times	×					
05						\times	\times	\times	\times	×					
06						\times	\times	\times	\times	×					
07											×	×	×	\times	×
<i>o</i> 8											×	×	×	\times	×

• How many frequent patterns? $1 + (2^5 - 1) \times 3 = 94$ patterns but actually 3 (potentially) interesting ones: $\{a_1, a_2, a_3, a_4, a_5\}, \{a_6, a_7, a_8, a_9, a_{10}\}, \{a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\}.$

\mathcal{O}	a1	a ₂	a ₃	a 4	a_5	a 6	a ₇	a_8	a 9	a_{10}	a_{11}	a ₁₂	a ₁₃	<i>a</i> ₁₄	a_{15}
01	×	×	×	×	×										
<i>o</i> ₂	×	\times	×	×	\times										
03	×	\times	\times	\times	×										
<i>o</i> ₄						\times	\times	\times	\times	×					
05						×	×	\times	\times	×					
06						\times	\times	\times	\times	×					
07											×	×	×	\times	×
08											×	×	×	×	×

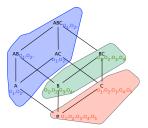
How many frequent patterns? 1 + (2⁵ - 1) × 3 = 94 patterns but actually 3 (potentially) interesting ones: {a₁, a₂, a₃, a₄, a₅}, {a₆, a₇, a₈, a₉, a₁₀}, {a₁₁, a₁₂, a₁₃, a₁₄, a₁₅}.

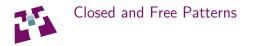
IN the need to focus on a **condensed representation** of frequent patterns.



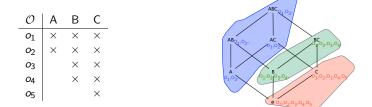
Equivalence classes based on support.

\mathcal{O}	A	В	С
o_1	×	\times	×
<i>o</i> ₂	×	\times	\times
<i>o</i> 3		\times	\times
04		\times	×
05			×





Equivalence classes based on support.



- **Closed** patterns are maximal element of each equivalence class (Bastide et al., SIGKDD Exp. 2000): *ABC*, *BC*, and *C*.
- Generators or Free patterns are minimal elements of each equivalent class (Boulicaut et al, DAMI 2003): {}, A and B

• Consider the set of closed (frequent) item sets:

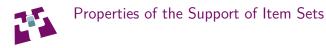
 $\mathcal{C}(\mathcal{D},\theta) = \{X \subseteq \mathcal{I} \mid \textit{freq}(X,\mathcal{D}) \geq \theta \land \forall Y \supset X : \textit{freq}(Y,\mathcal{D}) < \textit{freq}(X,\mathcal{D})\}$

That is: An item set is closed if it is frequent, but none of its proper supersets has the same support.

• With this definition it follows

$$\forall X \in F(\mathcal{D}, \theta) : \exists Y \in C(\mathcal{D}, \theta) : X \subseteq Y.$$

That is: Every frequent item set has a closed superset.



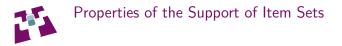
- A brute force approach that traverses all possible item sets, determines their support, and discards infrequent item sets is usually infeasible:
- Idea: Consider the properties of an item set's cover and support, in particular:

$$\forall X : \forall Y \supseteq X : cover(Y) \subseteq cover(X).$$

It follows:

$$\forall X : \forall Y \supseteq X : freq(Y, D) < freq(X, D.$$

That is: **If an item set is extended, its support cannot increase.** One also says that support is **anti-monotone** or **downward closed**.



From ∀X : ∀Y ⊇ X : freq(Y, D) < freq(X, D) it follows immediately

 $\forall \theta : \forall X : \forall Y \supseteq X : \quad freq(X, \mathcal{D}) < \theta \implies freq(Y, \mathcal{D}) < \theta$

That is: No superset of an infrequent item set can be frequent.

• Of course, the contraposition of this implication also holds:

 $\forall \theta : \forall X : \forall Y \subseteq X : \quad freq(X, \mathcal{D}) \geq \theta \Rightarrow freq(Y, \mathcal{D}) \geq \theta$

That is: All subsets of a frequent item set are frequent.

Why declarative approaches?

• Specific methods/algorithms for specific problems

- Limited flexibility:
 - for each problem, do not write a solution from scratch
 - refining solution methods is hard, but typical in the KDD cycle
- Using constraint programming (CP) to specify data mining tasks as constraint satisfaction and optimization problems :
 - Reusing solving technology
 - Adding/removing (user) constraints
 - Exhaustive, optimal

Declarative approaches for Item set mining

- Pattern mining : De Raedt et al., KDD'08, Lazaar et al., CP'16, Schaus et al., CP'17, Belaid et al., IJCAI'19, Jabbour et al.CIKM'13, Boudane et al., IJCAI'16, Y. Izza et al., IJCAI'20, A. Hien et al., ECML/PKDD'20
- Sequence mining : E. Coquery et al. ECAI'12, Negrevergne et al., CPAIOR'15, Kemmar et al. CP'15, Aoga et al. ECML/PKDD'16, A. Hosseininasab et al., AAAI'19
- Pattern set mining : Khiari et al., CP'10, Guns et al., TKDE'13, Ouali et al., PAKDD'17
- Skypatterns / multi-objective : Negrevergne et al., ICDM'16, Ugarte et al. ECAI'14 & AIJ'17
- Clustering : Mueller et al, DS'10, Babaki et al., CPAIOR'14, Dao et al. CP'15 & ECAI'16 & JCAI'18, Ouali et al. IJCAI'16, Chabert et al., CP'17 & JAIR'20, N. ARIBI et al. PAKDD'18
- Classification : H. Verhaeghe et al. IJCAI'20, A. Ignatiev et al., CP'20, M. Mulamba et al. CPAIOR'20

A generic framework for solving combinatorial problems

• A declarative description of the problem by a triplet (X,D,C) where

- $X = \{x_1, \ldots, x_n\}$ is finite set of variables
- $D = \{D_1, \dots, D_n\}$ is finite set of domains (a.k.a possible values) of variables
- $C = \{c_1, \dots, c_e\}$ is a set of constraints restricting the values of variables x_i

• **Resolution** = Enumeration + Filtering

solution \equiv assignments on X satisfying all constraints of C

• domains reduction : process of removing values from variables which cannot lead to any solution

• propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.

- domains reduction : process of removing values from variables which cannot lead to any solution
 - exemple: $x_1 > x_2$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$ $\Rightarrow D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.

- domains reduction : process of removing values from variables which cannot lead to any solution
 - exemple: $x_1 > x_2$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$ $\Rightarrow D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.
 - exemple: $x_1 > x_2$, $x_1 = x_3$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$, $D_3 = \{1, 3\}$ $(x_1 > x_2) \implies D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$

- domains reduction : process of removing values from variables which cannot lead to any solution
 - exemple: $x_1 > x_2$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$ $\Rightarrow D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.
 - exemple: $x_1 > x_2$, $x_1 = x_3$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$, $D_3 = \{1, 3\}$ $(x_1 > x_2) \twoheadrightarrow D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$ $(x_1 = x_3) \twoheadrightarrow D_1 = \{1, 2\}$, $D_3 = \{1, 3\}$

- domains reduction : process of removing values from variables which cannot lead to any solution
 - exemple: $x_1 > x_2$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$ $\Rightarrow D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.
 - exemple: $x_1 > x_2$, $x_1 = x_3$ et $D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$, $D_3 = \{1, 3\}$ $(x_1 > x_2) \twoheadrightarrow D_1 = \{1, 2\}$, $D_2 = \{0, 1, 2, 3\}$ $(x_1 = x_3) \twoheadrightarrow D_1 = \{1, 2\}$, $D_3 = \{1, 3\}$ $(x_1 = 1) \land (x_1 > x_2) \Longrightarrow D_2 = \{0, 1\}$

- Constraints defined by a relation on any number of variables
- Example: **AllDifferent**(*x*₁,...,*x*_n) specifies that all its variables must take different values
- Better filtering :
 - A level of consistency at least as high as one could maintain on elementary constraints
 - filtering performed using other tools
 - Algorithms on graphs / automatons,
 - network flow,
 - ...

- Let d- be the 0/1 matrix where, for each transaction t and each item i, $(d_{t,i} = 1)$ iff $(i \in t)$.
- Variables :
 - Let X be the unknown pattern we are looking for. X is represented by n Boolean variables $\{X_i \mid i \in \mathcal{I}\}$ such that : $\forall i \in \mathcal{I}, (X_i = 1)$ iff $(i \in X)$
 - The support of pattern X is represented by *m* Boolean variables $\{T_t \mid t \in \mathcal{T}\}$ such that : $(T_t = 1)$ iff $(X \subseteq t)$

• Constraints:

- coverage : $\forall t \in \mathcal{T}, (T_t = 1) \Leftrightarrow \sum_{i \in \mathcal{I}} l_i \times (1 d_{t,i}) = 0$
- frequency : $\forall i \in \mathcal{I}, (X_i = 1) \Rightarrow \sum_{t \in \mathcal{T}} T_t \ge \theta$
- redundant constraints : $\forall i \in \mathcal{I}, (X_i = 1) \Rightarrow \sum_{t \in \mathcal{T}} T_t \times d_{t,i} \ge \theta$

Transaction database i_1 i₂ İз 0 t₁ 1 0 1 1 0 t_2 0 t3 0 1 1 0 1 t4

Coverage constraints

$$T_1 = 1 \quad \Leftrightarrow \quad (X_2 + X_3 = 0)$$

$$T_2 = 1 \quad \Leftrightarrow \quad (X_2 = 0)$$

$$T_3 = 1 \quad \Leftrightarrow \quad (X_1 + X_2 = 0)$$

$$T_4 = 1 \quad \Leftrightarrow \quad (X_1 = 0)$$

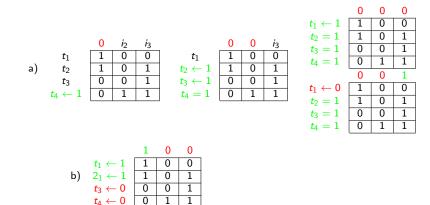
Frequency constraint

$$T_1 + T_2 + T_3 + T_4 \geq \theta = 2$$

Redundant constraints

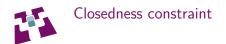
$$\begin{array}{rrrr} X_1 = 1 & \Rightarrow & T_1 + T_2 \geq \theta = 2 \\ X_2 = 1 & \Rightarrow & T_4 \geq \theta \\ X_3 = 1 & \Rightarrow & T_2 + T_3 + T_4 \geq \theta = 2 \end{array}$$

Example : Enumeration and propagation



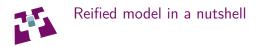
Three frequent item sets mined:

- $\{i_1\}$ with cover $\{t_1, t_2\}$,
- $\{i_3\}$ with cover $\{t_2, t_3, t_4\}$
- \emptyset with cover $\{t_1, t_2, t_3, t_4\}$.



- The closedness constraint ensures that a pattern has no superset with the same frequency.
 - coverage (required) : $\forall t \in \mathcal{T}, (T_t = 1) \Leftrightarrow \sum_{i \in \mathcal{I}} I_i \times (1 d_{t,i}) = 0$

- closed :
$$\forall i \in \mathcal{I}, (X_i = 1) \Leftrightarrow \sum_{t \in \mathcal{T}} T_t \times (1 - d_{t,i}) = 0$$



Advantages:

- Intuitive CP encoding
- Generic: many constraints can be expressed
- Effective in case of tight constraints

Drawbacks:

- use an additional dimension of transaction variables
- huge number of constraints: (2n + m) reified constraints
- scalability issue: genericity/efficiency trade-off

➡ Scaling up CP solvers to large data ?

A **global constraint** that encodes efficiently the Closed Frequent item sets mining problem (CLOSEDPATTERNS [Lazaar et al., 2016])

- Domain consistency with polynomial algorithm
- No reified constraints/extra variables

COVERSIZE global constraint (Schaus et al., CP'17) (not in this talk):

- New extra decision variable to manage the exact size of the cover of an itemset
- Offers more flexibility in modeling problems

- Use a vector X of Boolean variables $(X_1,\ldots,X_{|\mathcal{I}|})$ for representing item sets
- CLOSEDPATTERNS_{\mathcal{D}, θ}(X) holds if and only if $freq(X) \geq \theta$ and X is closed
- Closure extension : A non-empty item set P is a closure extension of Q iff cover(P ∪ Q) = cover(Q) → used for mining closed itemsets

if *P* is a closure extension of *Q*, and none of the proper supersets of *P* is a closure extension of *Q*, then $P \cup Q$ forms a closed pattern.

Three filtering rules : Let X^+ be the set of present items

- **1** remove value 0 from $dom(X_i)$ if $\{i\}$ is a closure extension of X^+
- **2** remove value 1 from $dom(X_i)$ if the itemset $X^+ \cup \{i\}$ is infrequent w.r.t. θ
- **③** remove value 1 from $dom(X_i)$ if $cover(X^+ \cup \{i\}) \subseteq cover(X^+ \cup \{j\})$ where *j* is an absent item.

```
Time complexity: O(n \times (n \times m))
```


Running example : $CLOSEDPATTERNS_{\mathcal{D},3}(X_1, \ldots, X_6)$ (2/2)

Trans.	Items					Trans.	A	С	D	Т	W	Ζ	
t_1	A	С		Т	W		t_1	1	1	0	1	1	0
t_2		С	D		W		t_2	0	1	1	0	1	0
t_3	A	С		Т	W	Ζ	t ₃	1	1	0	1	1	1
t_4	A	С	D		W	Ζ	t ₄	1	1	1	0	1	1
t_5	A	С	D	Т	W		t_5	1	1	1	1	1	0
t_6		С	D	Т			t ₆	0	1	1	1	0	0

	0	0/1	0/1	0/1	1	0/1
Trans.	Α	С	D	Т	W	Ζ
t_1	1	1	0	1	1	0
t_2	0	1	1	0	1	0
t_3	1	1	0	1	1	1
t_4	1	1	1	0	1	1
t_5	1	1	1	1	1	0
t_6	0	1	1	1	0	0

Suppose that $X_1 = 0$ and $X_5 = 1 \implies X = \{W\}$


```
Running example : CLOSEDPATTERNS_{\mathcal{D},3}(X_1, \ldots, X_6) (2/2)
```

Trans.			Item	s			Trans.	A	С	D	Т	W	Ζ
t_1	A	С		Т	W		t_1	1	1	0	1	1	0
t_2		С	D		W		t_2	0	1	1	0	1	0
t_3	A	С		Т	W	Ζ	t ₃	1	1	0	1	1	1
t_4	A	С	D		W	Z	t4	1	1	1	0	1	1
t_5	A	С	D	Т	W		t_5	1	1	1	1	1	0
t ₆		С	D	Т			t ₆	0	1	1	1	0	0

	0	1	0/1	0/1	1	0/1
Trans.	Α	С	D	Т	W	Ζ
t_1	1	1	0	1	1	0
t_2	0	1	1	0	1	0
t_3	1	1	0	1	1	1
t_4	1	1	1	0	1	1
t_5	1	1	1	1	1	0
t_6	0	1	1	1	0	0

 $\{C\}$ is a closure extension of $\{W\} mtextbf{m} extbf{Rule} \#1$ applied

Running example : $CLOSEDPATTERNS_{\mathcal{D},3}(X_1, \ldots, X_6)$ (2/2)

Trans.			Item	s			Trans.	A	С	D	Т	W	Ζ
t_1	A	С		Т	W		t_1	1	1	0	1	1	0
t_2		С	D		W		t_2	0	1	1	0	1	0
t_3	A	С		Т	W	Ζ	t_3	1	1	0	1	1	1
t_4	A	С	D		W	Ζ	t_4	1	1	1	0	1	1
t_5	A	С	D	Т	W		t_5	1	1	1	1	1	0
t ₆		С	D	Т			t ₆	0	1	1	1	0	0

	0	1	0/1	0/1	1	0
Trans.	Α	С	D	Т	W	Ζ
t_1	1	1	0	1	1	0
t_2	0	1	1	0	1	0
t_3	1	1	0	1	1	1
t_4	1	1	1	0	1	1
t_5	1	1	1	1	1	0
t_6	0	1	1	1	0	0

 $freq(WZ) = 2 < 3 \implies \text{Rule}\#2 \text{ applied}$

Running example : $CLOSEDPATTERNS_{\mathcal{D},3}(X_1, \ldots, X_6)$ (2/2)

Trans.			Item	s			Trans.	A	С	D	Т	W	Ζ
t_1	A	С		Т	W		t_1	1	1	0	1	1	0
t_2		С	D		W		t_2	0	1	1	0	1	0
t_3	A	С		Т	W	Ζ	t ₃	1	1	0	1	1	1
t_4	A	С	D		W	Ζ	t4	1	1	1	0	1	1
t_5	A	С	D	Т	W		t_5	1	1	1	1	1	0
t ₆		С	D	Т			t ₆	0	1	1	1	0	0

0	' -	1	0	
Ζ)	С	A	Trans.
0)	1	1	t_1
0		1	0	t_2
1)	1	1	t_3
1		1	1	t_4
0		1	1	t_5
0		1	0	t ₆
)	1 1 1 1 1 1 1 1	0 A 1 0 1 1 1 1 0	$\begin{array}{c} t_1\\t_2\\t_3\\t_4\\t_5\end{array}$

 $cover(TW) \subset cover(AW)$ Rule#3 applied

Experiments (1/3)

Dataset	$ \mathcal{T} $	$ \mathcal{I} $	ρ	type of data
Chess	3 196	75	49%	game steps
Splice1	3 190	287	21%	genetic sequences
Mushroom	8 124	119	19%	species of mushrooms
Connect	67 557	129	33%	game steps
BMS-Web-View1	59 602	2.5	0.5%	web click stream
T10I4D100K	100 000	1 000	1%	synthetic dataset
T40I10D100K	100 000	1 000	4%	synthetic dataset
Pumsb	49 046	7 117	1%	census data
Retail	88 162	16 470	0.06%	retail market basket data

Comparison with:

- The most efficient CP method: CP4IM (reified)
- The most efficient ad hoc algorithm: LCM-v5.2ce.2cm

Experiments (2/3) : CLOSEDPATTERNS vs CP4IM

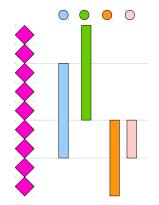
\mathcal{D}	θ	#C	#Node	s	Time (s)	
	(%)	(≈)	ClosedPatterns	CP4IM	ClosedPatterns	CP4IM
	50	105	738 901	738 907	3.21	10.97
9	40	10 ⁶	2 733 667	2 733 735	12.27	40.85
chess	30	10 ⁶	10 679 631	10 681 739	45.92	136.31
U U	20	107	45 837 171	45 901 933	187.89	467.52
	10	10 ⁸	247 960 091	249 411 325	969.40	1 950.51
	20	10 ²	487	487	0.59	22.59
splice1	10	10 ³	3 211	3 211	0.14	25.54
spli	5	104	63 935	63 935	3.23	138.54
	1	10 ⁷	13 454 755	13 467 247	400.10	1 652.41
	90	10 ³	6 973	6 973	0.92	7.10
	80	10 ⁴	30 223	30 223	1.65	16.57
	70	104	71 761	71 761	4.09	33.72
t	60	10 ⁵	136 699	136 699	7.30	45.73
connect	50	105	260 223	260 223	14.53	110.19
5	40	10 ⁵	478 781	478 781	27.32	153.39
	30	105	920 823	920 823	49.97	304.52
	20	10 ⁶	2 966 399	2 966 399	157.40	712.68
	10	10 ⁷	16 075 555	16 075 555	760.71	2 597.89
	10	10 ²	177	DOM	1.13	OOM
T40*	5	10 ²	643	OOM	1.78	DOM
1	1	10 ⁵	130 477	MOO	25.78	DOM
	0.5	10 ⁶	2 551 883	MOO	953.58	OOM
	10	10	19	MOO	2.55	OOM
-	1	10 ²	329	DOM	4.02	MOO
retail	0.5	10 ³	1 233	MOO	12.73	DOM
-	0.1	10 ⁴	15 901	MOO	796.82	OOM
	0.05	104	40 229	MOO	2 645.06	OOM

Experiments (3/3) : CLOSEDPATTERNS vs LCM

\mathcal{D}	θ	#C	Time	(s)	
	(%)	(≈)	ClosedPatterns	CP4IM	lcm
	50	10 ⁵	3.21	10.97	.32
\$	40	10 ⁶	12.27	40.85	.44
chess	30	10 ⁶	45.92	136.31	.07
	20	10 ⁷	187.89	467.52	7.55
	10	10 ⁸	969.40	1 950.51	41.55
	20	10 ²	0.59	22.59	.04
splice1	10	10 ³	0.14	25.54	.07
spli	5	104	3.23	138.54	.46
	1	10 ⁷	400.10	1 652.41	3.59
	90	10 ³	0.92	7.10	.22
	80	10 ⁴	1.65	16.57	.31
	70	104	4.09	33.72	.40
t	60	10 ⁵	7.30	45.73	.39
connect	50	10 ⁵	14.53	110.19	.52
8	40	10 ⁵	27.32	153.39	.83
	30	10 ⁵	49.97	304.52	.37
	20	10 ⁶	157.40	712.68	.37
	10	107	760.71	2 597.89	7.70
	10	10 ²	1.13	OOM	.43
T40*	5	10 ²	1.78	DOM	.31
ř	1	10 ⁵	25.78	OOM	1.32
	0.5	10 ⁶	953.58	OOM	3.31
	10	10	2.55	OOM	.06
-	1	10 ²	4.02	MOO	.10
retail	0.5	10 ³	12.73	OOM	.32
-	0.1	10 ⁴	796.82	OOM	.80
	0.05	104	2 645.06	OOM	.07

Mining diverse patterns using CP

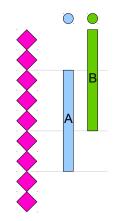
- Too many patterns, unmanageable and diversity not necessary assured
- Find a set of patterns that is:
 - small
 - non-redundant
- Several approaches for mining non-redundant patterns :
 - Mikis (Knobbe & Ho, 2006)
 - Piker (Bringmann & Zimmermann, 2009)



Exploiting CP for mining diverse set of patterns

Exploiting similarity measure to compare pairs of patterns :

- $|A \cap B|$
- $|A \cap B|/|A|.|B|$ (Cosine similarity)
- $|A \cap B|/|A \cup B|$ (Jaccard index)
- $|A \cup B| |A \cap B|$ (Hamming distance)





Definition (Diversity/Jaccard constraint)

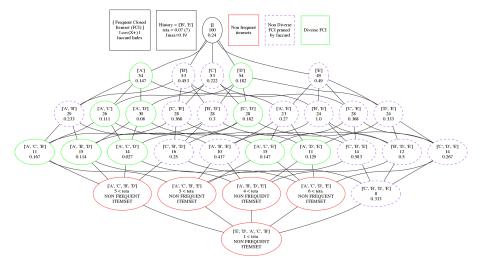
Let P and Q be two patterns. Given the Jaccard index Jac and a diversity threshold J_{max} , we say that P and Q are pairwise diverse iff $Jac(P, Q) \leq J_{max}$.

Idea: Push the Jaccard constraint during pattern discovery to prune non-diverse patterns.

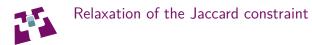
Task : Given a history \mathcal{H} of k pairwise diverse frequent closed patterns, the task is to mine new patterns P such that $\forall H \in \mathcal{H}$, $Jac(P, H) \leq J_{max}$.

Anti-monotonicity of the Jaccard constraint

The anti-monotonicity does not hold for the Jaccard constraint



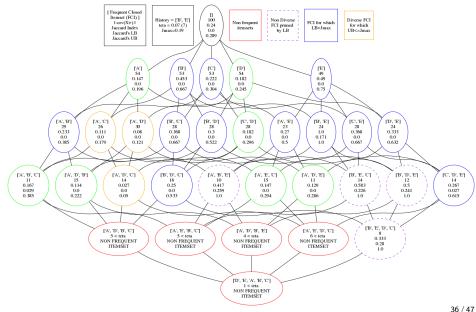
- For $\mathcal{H} = \{BE\}$ and $J_{max} = 0.19$, $Jac(AE, \mathcal{H}) = 0.27 \ge J_{max}$ whereas $Jac(ACE, \mathcal{H}) = 0.147 \le J_{max}$.



Anti-monotonic relaxations of the Jaccard constraint:

- (i) **A lower bound relaxation** *LB_J*, which allows to prune non-diverse patterns during search;
- (ii) An upper bound relaxation UB_J to find patterns ensuring diversity.

Relaxation of the Jaccard constraint : Example



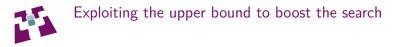
- Monotonicity of LB_J : Let $H \in \mathcal{H}$ be an itemset. For any two patterns $P \subseteq Q$, the relationship $LB_J(P, H) \leq LB_J(Q, H)$ holds.
 - If $LB_J(P, H) > J_{max} \Rightarrow Jac(P, H) > J_{max} \Rightarrow P$ is not diverse
- Anti-monotonicity of UB_J : Let $H \in \mathcal{H}$ be an itemset. For any two patterns $P \subseteq Q$, the relationship $UB_J(P, H) \ge UB_J(Q, H)$ holds.
 - ⇒ If $UB_J(P, H) \leq J_{max} \Rightarrow Jac(P, H) \leq J_{max} \Rightarrow P$ is diverse
- New mining task : Given a history *H* of *k* pairwise diverse frequent closed patterns, the new task is to mine candidate patterns *P* s.t. ∀ *H* ∈ *H*, *LB_J(P, H)* ≤ *J_{max}*. When *UB_J(P, H)* ≤ *J_{max}*, for all *H* ∈ *H*, the Jaccard constraint is fully satisfied.

- Use a vector X of Boolean variables $(X_1, \ldots, X_{|\mathcal{I}|})$ for representing item sets
- CLOSEDDIVERSITY $\mathcal{D}_{,\theta}(X, \mathcal{H}, J_{max})$ holds if and only if :
 - (1) $freq(X) \ge \theta$ and X is closed \blacksquare CLOSEDPATTERNS
 - (2) X is diverse, $\forall H \in \mathcal{H}, LB_J(X, H) \leq J_{max}$.

Two filtering rules : Let X_{Div} be the set of items filtered by (Rule #1)

- **1** remove 1 from $dom(X_i)$ if $\exists H \in \mathcal{H}$ s.t. $LB_J(X^+ \cup \{i\}, H) > J_{max}$
- ② remove 1 from $dom(X_i)$ if $\exists k \in X_{Div}$ s.t. $cover(X^+ \cup \{i\}) \subseteq cover(X^+ \cup \{k\})$ ⇒ $LB_J(X^+ \cup \{i\}, H) > LB_J(X^+ \cup \{k\}, H) > J_{max}$

Time complexity: $O(n \times (n \times m))$



New branching heuristic (WITNESS) : select the next free item *i* s.t. $\forall H \in \mathcal{H}, UB_J(X^+ \cup \{i\}, H) \leq J_{max}$

Main idea : select free items favoring the satisfaction of the Jaccard constraint when extending the partial assignment X^+ of an itemset.

Exploring the witness subtree: as all supersets of $X^+ \cup \{i\}$ will satisfy the Jaccard constraint, only generate the first closed diverse pattern in the subtree, add it to the history \mathcal{H} and continue the exploration of the remaining search space.

Baseline brunching heuristic (MINCOV) : select the next free item i having the minimum estimated support.

Experiments (1/3)

Dataset	$ \mathcal{T} $	$ \mathcal{I} $	ρ	type of data
Chess	3 196	75	49%	game steps
Splice1	3 190	287	21%	genetic sequences
Mushroom	8 124	119	19%	species of mushrooms
Connect	67 557	129	33%	game steps
BMS-Web-View1	59 602	2.5	0.5%	web click stream
T10I4D100K	100 000	1 000	1%	synthetic dataset
T40I10D100K	100 000	1 000	4%	synthetic dataset
Pumsb	49 046	7 117	1%	census data
Retail	88 162	16 470	0.06%	retail market basket data

Comparison with:

- CLOSEDPATTERNS (denoted CLOSEDP)
- FLEXICS (Dzyuba et al., DMKD 2017)

Implementation: Choco solver, timeout = 24 hours

Comparing CLOSEDDIV with CLOSEDP (1/2)

Dataset		#Patte	erns	Tim	ne (s)	#Nod	es
$egin{array}{c} \mathcal{I} imes \mathcal{T} \ ho(\%) \end{array}$	$\theta(\%)$	(1)	(2)	(1)	(2)	(2)	(2)
CHESS	30	5,316,468	14	815.15	0.41	10,632,935	57
75×3196	20	22,808,625	65	2838.30	3.40	45,617,249	318
49.33%	15	50,723,131	238	5666.03	26.18	101,446,261	1,154
	10	DOM	1,622	OOM	728.13	MOO	7,774
KR-VS-KP	30	5,219,727	14	682.94	0.41	10,439,453	57
73×3196	20	21,676,719	64	2100.79	3.41	43,353,437	307
49.32%	10	OOM	1,609	OOM	744.49	OOM	9,505
Mushroom	5	8,977	125	10.02	52.21	17,953	1,357
112×8124	1	40,368	9,935	34.76	8976.82	80,735	20,924
18.75%	0.8	47,765	12,743	36.52	14136.48	95,529	26,660
	0.5	62,334	23,931	50.05	50646.09	124,667	49,406
Pumsb	40	-	4	-	58.78	-	15
$2,113\times49,046$	30	-	14	-	246.80	-	59
3.50%	20	-	39	-	797.87	-	206
T40I10D100K	8	138	125	75.91	346.24	275	249
942×100000	5	317	284	331.47	1514.76	633	567
4.20%	1	65,237	7,217	5574.31	53000.72	130,473	14,517
Retail	5	17	12	10.74	31.13	33	23
$16470 \times 88,162$	1	160	105	297.21	1599.69	319	218
0.06%	0.4	832	515	6073.53	31962.90	1,663	1,071

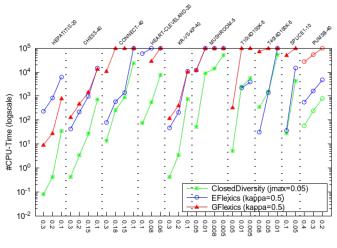
Table: (1): CLOSEDP (2): CLOSEDDIV ($J_{max} = 0.05$) with MINCOV

• CLOSEDDIV generates less patterns (in the thousands) in comparison to CLOSEDP (in millions).

• On dense data sets, CLOSEDDIV is up to an order of magnitude faster than CLOSEDP.

• On sparse data sets, CLOSEDDIV can take significantly more time to extract all diverse frequent closed patterns.

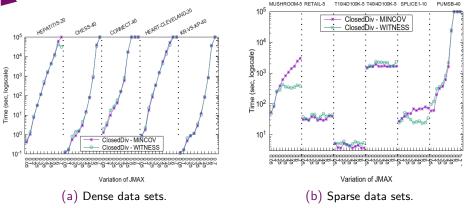
CPU Time Comparison of $\operatorname{CLOSEDDIV}$ with $\operatorname{FLEXICS}$



Frequency Thresholds

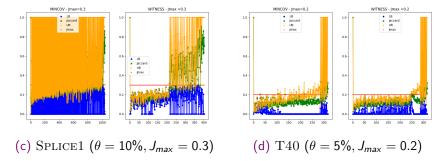
 \clubsuit CLOSEDDIV largely dominates $\rm FLEXICS,$ being more than an order of magnitude faster.

WITNESS vs MINCOV: CPU-time



- The greater J_{max} , the longer the CPU time
- On dense data sets, both heuristics perform similarly
- On moderately dense data sets, WITNESS is very effective
- On sparse data sets, no heuristic clearly dominates the other

Qualitative analysis of the relaxation



WITNESS allows to quickly discover a fewer set of patterns of better quality compared to MINCOV

A new generic solution for mining frequent diverse closed patterns

- Exploiting relaxations in filtering and search procedure
- Other diversity measures (entropy)

 \blacksquare Leveraging Jaccard index in $\rm CLOSEDDIVERSITY$ leads to pattern sets with more diversity among the patterns

Other well known modeling paradigm in A.I. : SAT, ILP, ASP

A growing interest for exploiting them in DM/ML:

- On wide range of tasks
- Reuse of solving technology: can outperform state-of-the-art

Nevertheless, scalability issue:

- Novel encodings/propagators
- Hybridization