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Data mining

... is ”the use of sophisticated data analysis tools to discover unknown,
valid patterns and relationships in large datasets”

Data mining:
Core of KDD
Search for knowledge in data
(regularities or correlations)
Pattern domain : item-sets,
sequences, graphs, etc.
examples including pattern mining,
clustering, association rules, etc.

g1 g2 g3 g4
s1 x x
s2 x x x
s3 x x
s4 x x x
s5 x x x

frequent pattern : g1g2
association rule : g1g2 → g3
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Frequent Item Set Mining : Motivation

Finding regularities from transaction databases

Example of Market Basket Data
Finding regularities in the shopping behavior of customers of supermarkets,
on-line shops, etc.
More specifically:
Find sets of products that are frequently bought together.
Possible applications of found frequent item sets:

Improve arrangement of products in shelves, on a catalog’s pages etc.
Support cross-selling (suggestion of other products), product bundling.

Often found patterns are expressed as association rules, for example:
If a customer buys bread and wine,
then she/he will probably also buy cheese.
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Item Set: definition

Definition
Given a set of items (or attributes) I, an itemset X is a subset of items,
i.e., X ⊆ I.

Input:

i1 i2 . . . in
o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
...

...
... . . . ...

om dm,1 dm,2 . . . dm,n

where di ,j ∈ {true,false}

Size of the space search
How many itemsets are there ? 2|I|.
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Transactional representation of the data

Relational representation: T ⊆ O × I Transactional representation: T is an array of
subsets of I

i1 i2 . . . in
o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
...

...
...

. . .
...

om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

t1
t2
...

tm

where ti ⊆ I

Example
i1 i2 i3

o1 × × ×
o2 × ×
o3 ×
o4 ×

t1 i1, i2, i3
t2 i1, i2
t3 i2
t4 i3
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Frequent Item Set mining

Problem Definition
Given the objects in O described with the Boolean attributes in I, listing
every item set having a frequency above a given threshold θ ∈ N.

Input:
a1 a2 . . . an

o1 d1,1 d1,2 . . . d1,n
o2 d2,1 d2,2 . . . d2,n
...

...
...

. . .
...

om dm,1 dm,2 . . . dm,n

where di,j ∈ {true,false}

and a minimal frequency θ ∈ N.
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Frequent Item Set mining

Problem Definition
Given the objects in O described with the Boolean attributes in I, listing
every item set having a frequency above a given threshold θ ∈ N.

Output: every X ⊆ I such that there are at least θ objects having all attributes in X .
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Frequent Item Set mining: illustration

Specifying a minimal frequency threshold θ = 2 objects (or, equivalently, a
minimal relative frequency of 50%).

a1 a2 a3
o1 × × ×
o2 × ×
o3 ×
o4 ×
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Frequent Item Set mining: illustration

Specifying a minimal frequency threshold θ = 2 objects (or, equivalently, a
minimal relative frequency of 50%).

a1 a2 a3
o1 × × ×
o2 × ×
o3 ×
o4 ×

The frequent itemsets are: ∅ (4), {a1} (2), {a2}
(3), {a3} (2) and {a1, a2} (2).
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Pattern flooding

θ = 2
O a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
o1 × × × × ×
o2 × × × × ×
o3 × × × × ×
o4 × × × × ×
o5 × × × × ×
o6 × × × × ×
o7 × × × × ×
o8 × × × × ×

How many frequent patterns?

1 + (25 − 1)× 3 = 94 patterns but
actually 3 (potentially) interesting ones:
{a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10}, {a11, a12, a13, a14, a15}.

+ the need to focus on a condensed representation of frequent patterns.
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Closed and Free Patterns

Equivalence classes based on support.

O A B C
o1 × × ×
o2 × × ×
o3 × ×
o4 × ×
o5 ×

ABC

A B C

AB AC

ø O1,O2,O3,O4,O5

O1,O2,O3,O4,

O1,O2,

BC

O1,O2,O3,O4,O5

O1,O2,

O1,O2,

O1,O2,

O1,O2,O3,O4,

Closed patterns are maximal element of each equivalence class
(Bastide et al., SIGKDD Exp. 2000): ABC ,BC , and C .
Generators or Free patterns are minimal elements of each equivalent
class (Boulicaut et al, DAMI 2003): {},A and B
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Closed Item sets

Consider the set of closed (frequent) item sets:

C(D, θ) = {X ⊆ I | freq(X ,D) ≥ θ∧∀Y ⊃ X : freq(Y ,D) < freq(X ,D)}.

That is: An item set is closed if it is frequent,
but none of its proper supersets has the same support.

With this definition it follows

∀X ∈ F (D, θ) : ∃Y ∈ C(D, θ) : X ⊆ Y .

That is: Every frequent item set has a closed superset.
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Properties of the Support of Item Sets

A brute force approach that traverses all possible item sets,
determines their support, and discards infrequent item sets is usually
infeasible:

Idea: Consider the properties of an item set’s cover and support, in
particular:

∀X : ∀Y ⊇ X : cover(Y ) ⊆ cover(X ).

It follows:
∀X : ∀Y ⊇ X : freq(Y ,D) < freq(X ,D.

That is: If an item set is extended, its support cannot increase.
One also says that support is anti-monotone or downward closed.
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Properties of the Support of Item Sets

From ∀X : ∀Y ⊇ X : freq(Y ,D) < freq(X ,D) it follows
immediately

∀θ : ∀X : ∀Y ⊇ X : freq(X ,D) < θ ⇒ freq(Y ,D) < θ

That is: No superset of an infrequent item set can be frequent.

Of course, the contraposition of this implication also holds:

∀θ : ∀X : ∀Y ⊆ X : freq(X ,D) ≥ θ ⇒ freq(Y ,D) ≥ θ

That is: All subsets of a frequent item set are frequent.
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Toward declarativity

Why declarative approaches?

Specific methods/algorithms for specific problems
- Limited flexibility:
- for each problem, do not write a solution from scratch
- refining solution methods is hard, but typical in the KDD cycle

Using constraint programming (CP) to specify data mining tasks as
constraint satisfaction and optimization problems :

- Reusing solving technology
- Adding/removing (user) constraints
- Exhaustive, optimal
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Declarative approaches for Item set mining
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Declarative Approaches

Pattern mining : De Raedt et al., KDD’08, Lazaar et al., CP’16, Schaus et al.,
CP’17, Belaid et al., IJCAI’19, Jabbour et al.CIKM’13, Boudane et al., IJCAI’16,
Y. Izza et al., IJCAI’20, A. Hien et al., ECML/PKDD’20
Sequence mining : E. Coquery et al. ECAI’12, Negrevergne et al., CPAIOR’15,
Kemmar et al. CP’15, Aoga et al. ECML/PKDD’16, A. Hosseininasab et al.,
AAAI’19
Pattern set mining : Khiari et al., CP’10, Guns et al., TKDE’13, Ouali et al.,
PAKDD’17
Skypatterns / multi-objective : Negrevergne et al., ICDM’16, Ugarte et al.
ECAI’14 & AIJ’17
Clustering : Mueller et al, DS’10, Babaki et al., CPAIOR’14, Dao et al. CP’15 &
ECAI’16 & JCAI’18, Ouali et al. IJCAI’16, Chabert et al., CP’17 & JAIR’20, N.
ARIBI et al. PAKDD’18
Classification : H. Verhaeghe et al. IJCAI’20, A. Ignatiev et al., CP’20, M.
Mulamba et al. CPAIOR’20
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Constraint Programming

A generic framework for solving combinatorial problems

A declarative description of the problem by a triplet (X ,D,C) where
- X = {x1, . . . , xn} is finite set of variables
- D = {D1, . . . ,Dn} is finite set of domains (a.k.a possible values) of variables
- C = {c1, . . . , ce} is a set of constraints restricting the values of variables xi

Resolution = Enumeration + Filtering

solution ≡ assignments on X satisfying all constraints of C
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Resolution process

Filering
domains reduction : process of removing values from variables which
cannot lead to any solution

exemple: x1 > x2 et D1 = {1, 2}, D2 = {0, 1, 2, 3}
à D1 = {1, 2}, D2 = {0, 1, 2/, 3/}

propagation : mechanism of calling the filtering algorithm associated
with the constraints involving a variable x each time the domain of
this variable is modified.

exemple: x1 > x2, x1 = x3 et D1 = {1, 2}, D2 = {0, 1, 2, 3}, D3 = {1, 3}
(x1 > x2) à D1 = {1, 2}, D2 = {0, 1, 2/, 3/}

(x1 = x3) à D1 = {1, 2/}, D3 = {1, 3/}
(x1 = 1) ∧ (x1 > x2) à D2 = {0, 1/}
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Global Constraints

Constraints defined by a relation on any number of variables

Example: AllDifferent(x1, . . . , xn) specifies that all its variables must take
different values

Better filtering :
A level of consistency at least as high as one could maintain on elementary
constraints

filtering performed using other tools
- Algorithms on graphs / automatons,
- network flow,
- . . .
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Item set mining using CP
CP4IM (De Raedt et al., 2008)

Let d - be the 0/1 matrix where, for each transaction t and each item i , (dt,i = 1)
iff (i ∈ t).

Variables :
- Let X be the unknown pattern we are looking for. X is represented by n
Boolean variables {Xi | i ∈ I} such that : ∀i ∈ I, (Xi = 1) iff (i ∈ X )

- The support of pattern X is represented by m Boolean variables
{Tt | t ∈ T } such that : (Tt = 1) iff (X ⊆ t)

Constraints:
- coverage : ∀t ∈ T , (Tt = 1)⇔

∑
i∈I Ii × (1− dt,i) = 0

- frequency : ∀i ∈ I, (Xi = 1)⇒
∑

t∈T Tt ≥ θ
- redundant constraints : ∀i ∈ I, (Xi = 1)⇒

∑
t∈T Tt × dt,i ≥ θ
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Example : CP model

Transaction database
i1 i2 i3

t1 1 0 0
t2 1 0 1
t3 0 0 1
t4 0 1 1

Coverage constraints

T1 = 1 ⇔ (X2 + X3 = 0)
T2 = 1 ⇔ (X2 = 0)
T3 = 1 ⇔ (X1 + X2 = 0)
T4 = 1 ⇔ (X1 = 0)

Frequency constraint

T1 + T2 + T3 + T4 ≥ θ = 2

Redundant constraints

X1 = 1 ⇒ T1 + T2 ≥ θ = 2
X2 = 1 ⇒ T4 ≥ θ
X3 = 1 ⇒ T2 + T3 + T4 ≥ θ = 2
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Example : Enumeration and propagation

a)

0 i2 i3
t1 1 0 0
t2 1 0 1
t3 0 0 1

t4 ← 1 0 1 1

0 0 i3
t1 1 0 0

t2 ← 1 1 0 1
t3 ← 1 0 0 1
t4 = 1 0 1 1

0 0 0
t1 ← 1 1 0 0
t2 = 1 1 0 1
t3 = 1 0 0 1
t4 = 1 0 1 1

0 0 1
t1 ← 0 1 0 0
t2 = 1 1 0 1
t3 = 1 0 0 1
t4 = 1 0 1 1

b)

1 0 0
t1 ← 1 1 0 0
21 ← 1 1 0 1
t3 ← 0 0 0 1
t4 ← 0 0 1 1

Three frequent item sets mined:
{i1} with cover {t1, t2},
{i3} with cover {t2, t3, t4}
∅ with cover {t1, t2, t3, t4}.
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Closedness constraint

The closedness constraint ensures that a pattern has no superset with
the same frequency.

- coverage (required) : ∀t ∈ T , (Tt = 1)⇔
∑

i∈I Ii × (1− dt,i) = 0

- closed : ∀i ∈ I, (Xi = 1)⇔
∑

t∈T
Tt × (1− dt,i) = 0
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Reified model in a nutshell

Advantages:

Intuitive CP encoding

Generic: many constraints
can be expressed

Effective in case of tight
constraints

Drawbacks:

use an additional dimension of
transaction variables

huge number of constraints: (2n + m)
reified constraints

scalability issue: genericity/efficiency
trade-off

å Scaling up CP solvers to large data ?

23 / 47



Global constraints for Closed Frequent item sets mining

A global constraint that encodes efficiently the Closed Frequent item sets mining
problem (ClosedPatterns [Lazaar et al., 2016])

Domain consistency with polynomial algorithm
No reified constraints/extra variables

CoverSize global constraint (Schaus et al., CP’17) (not in this talk):

New extra decision variable to manage the exact size of the cover of an itemset
Offers more flexibility in modeling problems
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ClosedPatternsD,θ(X1, . . . , X|I|) (1/2)
(N. Lazaar et al., CP 2016)

- Use a vector X of Boolean variables (X1, . . . ,X|I|) for representing item sets

- ClosedPatternsD,θ(X) holds if and only if freq(X) ≥ θ and X is closed

- Closure extension : A non-empty item set P is a closure extension of Q iff
cover(P ∪ Q) = cover(Q) à used for mining closed itemsets

if P is a closure extension of Q, and none of the proper supersets of P is a closure
extension of Q, then P ∪ Q forms a closed pattern.

Three filtering rules : Let X + be the set of present items
1 remove value 0 from dom(Xi ) if {i} is a closure extension of X +

2 remove value 1 from dom(Xi ) if the itemset X + ∪ {i} is infrequent w.r.t. θ

3 remove value 1 from dom(Xi ) if cover(X + ∪ {i}) ⊆ cover(X + ∪ {j})
where j is an absent item.

Time complexity: O(n × (n ×m))
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Running example : ClosedPatternsD,3(X1, . . . , X6) (2/2)

Trans. Items
t1 A C T W
t2 C D W
t3 A C T W Z
t4 A C D W Z
t5 A C D T W
t6 C D T

Trans. A C D T W Z
t1 1 1 0 1 1 0
t2 0 1 1 0 1 0
t3 1 1 0 1 1 1
t4 1 1 1 0 1 1
t5 1 1 1 1 1 0
t6 0 1 1 1 0 0

0 0/1 0/1 0/1 1 0/1
Trans. A C D T W Z

t1 1 1 0 1 1 0
t2 0 1 1 0 1 0
t3 1 1 0 1 1 1
t4 1 1 1 0 1 1
t5 1 1 1 1 1 0
t6 0 1 1 1 0 0

Suppose that X1 = 0 and X5 = 1 à X = {W }
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Running example : ClosedPatternsD,3(X1, . . . , X6) (2/2)

Trans. Items
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{C} is a closure extension of {W } àRule#1 applied
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Running example : ClosedPatternsD,3(X1, . . . , X6) (2/2)

Trans. Items
t1 A C T W
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cover(TW ) ⊂ cover(AW ) àRule#3 applied
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Experiments (1/3)

Dataset |T | |I| ρ type of data
Chess 3 196 75 49% game steps
Splice1 3 190 287 21% genetic sequences
Mushroom 8 124 119 19% species of mushrooms
Connect 67 557 129 33% game steps
BMS-Web-View1 59 602 2.5 0.5% web click stream
T10I4D100K 100 000 1 000 1% synthetic dataset
T40I10D100K 100 000 1 000 4% synthetic dataset
Pumsb 49 046 7 117 1% census data
Retail 88 162 16 470 0.06% retail market basket data

Comparison with:

The most efficient CP method: CP4IM (reified)

The most efficient ad hoc algorithm: LCM-v5.2ce.2cm

Implementation: OR-Tools, timeout = 3600 s.
å https://loudni.users.greyc.fr/CPMiner.html
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Experiments (2/3) : ClosedPatterns vs CP4IM

D θ #C #Nodes Time (s)
(%) (≈) ClosedPatterns CP4IM ClosedPatterns CP4IM

ch
es
s

50 105 738 901 738 907 3.21 10.97
40 106 2 733 667 2 733 735 12.27 40.85
30 106 10 679 631 10 681 739 45.92 136.31
20 107 45 837 171 45 901 933 187.89 467.52
10 108 247 960 091 249 411 325 969.40 1 950.51

sp
lic
e1

20 102 487 487 0.59 22.59
10 103 3 211 3 211 0.14 25.54
5 104 63 935 63 935 3.23 138.54
1 107 13 454 755 13 467 247 400.10 1 652.41

co
nn

ec
t

90 103 6 973 6 973 0.92 7.10
80 104 30 223 30 223 1.65 16.57
70 104 71 761 71 761 4.09 33.72
60 105 136 699 136 699 7.30 45.73
50 105 260 223 260 223 14.53 110.19
40 105 478 781 478 781 27.32 153.39
30 105 920 823 920 823 49.97 304.52
20 106 2 966 399 2 966 399 157.40 712.68
10 107 16 075 555 16 075 555 760.71 2 597.89

T
40
*

10 102 177 OOM 1.13 OOM
5 102 643 OOM 1.78 OOM
1 105 130 477 OOM 25.78 OOM
0.5 106 2 551 883 OOM 953.58 OOM

re
ta
il

10 10 19 OOM 2.55 OOM
1 102 329 OOM 4.02 OOM
0.5 103 1 233 OOM 12.73 OOM
0.1 104 15 901 OOM 796.82 OOM
0.05 104 40 229 OOM 2 645.06 OOM
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Experiments (3/3) : ClosedPatterns vs LCM

D θ #C Time (s)
(%) (≈) ClosedPatterns CP4IM lcm

ch
es
s

50 105 3.21 10.97 .32
40 106 12.27 40.85 .44
30 106 45.92 136.31 .07
20 107 187.89 467.52 7.55
10 108 969.40 1 950.51 41.55

sp
lic
e1

20 102 0.59 22.59 .04
10 103 0.14 25.54 .07
5 104 3.23 138.54 .46
1 107 400.10 1 652.41 3.59

co
nn

ec
t

90 103 0.92 7.10 .22
80 104 1.65 16.57 .31
70 104 4.09 33.72 .40
60 105 7.30 45.73 .39
50 105 14.53 110.19 .52
40 105 27.32 153.39 .83
30 105 49.97 304.52 .37
20 106 157.40 712.68 .37
10 107 760.71 2 597.89 7.70

T
40
*

10 102 1.13 OOM .43
5 102 1.78 OOM .31
1 105 25.78 OOM 1.32
0.5 106 953.58 OOM 3.31

re
ta
il

10 10 2.55 OOM .06
1 102 4.02 OOM .10
0.5 103 12.73 OOM .32
0.1 104 796.82 OOM .80
0.05 104 2 645.06 OOM .07
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Mining diverse patterns using CP
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Redundancy

Too many patterns,
unmanageable and diversity not
necessary assured

Find a set of patterns that is:
- small
- non-redundant

Several approaches for mining
non-redundant patterns :

- Mikis (Knobbe & Ho, 2006)
- Piker (Bringmann &
Zimmermann, 2009)

àExploiting CP for mining diverse set of patterns

31 / 47



Measuring Redundancy

Exploiting similarity measure to compare pairs of patterns :

|A ∩ B|

|A ∩ B|/|A|.|B| (Cosine similarity)

|A ∩ B|/|A ∪ B| (Jaccard index)

|A ∪ B| − |A ∩ B| (Hamming distance)

A

B
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Mining non-redundant patterns

Definition (Diversity/Jaccard constraint)
Let P and Q be two patterns. Given the Jaccard index Jac and a diversity
threshold Jmax , we say that P and Q are pairwise diverse iff Jac(P,Q) ≤ Jmax .

Idea: Push the Jaccard constraint during pattern discovery to prune non-diverse
patterns.

Task : Given a history H of k pairwise diverse frequent closed patterns, the task
is to mine new patterns P such that ∀H ∈ H, Jac(P,H) ≤ Jmax .
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Anti-monotonicity of the Jaccard constraint

The anti-monotonicity does not hold for the Jaccard constraint

- For H = {BE} and Jmax = 0.19, Jac(AE ,H) = 0.27 ≥ Jmax whereas
Jac(ACE ,H) = 0.147 ≤ Jmax .
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Relaxation of the Jaccard constraint

Anti-monotonic relaxations of the Jaccard constraint:

(i) A lower bound relaxation LBJ , which allows to prune non-diverse patterns
during search;

(ii) An upper bound relaxation UBJ to find patterns ensuring diversity.
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Relaxation of the Jaccard constraint : Example
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Jaccard lower and upper bounds

Monotonicity of LBJ : Let H ∈ H be an itemset. For any two patterns
P ⊆ Q, the relationship LBJ(P,H) ≤ LBJ(Q,H) holds.
å If LBJ(P,H) > Jmax ⇒ Jac(P,H) > Jmax ⇒ P is not diverse

Anti-monotonicity of UBJ : Let H ∈ H be an itemset. For any two patterns
P ⊆ Q, the relationship UBJ(P,H) ≥ UBJ(Q,H) holds.

å If UBJ(P,H) ≤ Jmax ⇒ Jac(P,H) ≤ Jmax ⇒ P is diverse

New mining task : Given a history H of k pairwise diverse frequent closed
patterns, the new task is to mine candidate patterns P s.t. ∀H ∈ H,
LBJ(P,H) ≤ Jmax . When UBJ(P,H) ≤ Jmax , for all H ∈ H, the Jaccard
constraint is fully satisfied.
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ClosedDiversityD,θ(X ,H, Jmax)
(A. Hien et al., ECML/PKDD 2020)

- Use a vector X of Boolean variables (X1, . . . ,X|I|) for representing item sets

- ClosedDiversityD,θ(X ,H, Jmax ) holds if and only if :

(1) freq(X ) ≥ θ and X is closed à ClosedPatterns
(2) X is diverse, ∀H ∈ H, LBJ(X ,H) ≤ Jmax .

Two filtering rules : Let XDiv be the set of items filtered by (Rule #1)

1 remove 1 from dom(Xi ) if ∃H ∈ H s.t. LBJ(X + ∪ {i},H) > Jmax

2 remove 1 from dom(Xi ) if ∃ k ∈ XDiv s.t. cover(X + ∪ {i}) ⊆ cover(X + ∪ {k})
å LBJ(X + ∪ {i},H) > LBJ(X + ∪ {k},H) > Jmax

Time complexity: O(n × (n ×m))
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Exploiting the upper bound to boost the search

New branching heuristic (Witness) : select the next free item i s.t.
∀H ∈ H,UBJ(X + ∪ {i},H) ≤ Jmax

Main idea : select free items favoring the satisfaction of the Jaccard constraint when
extending the partial assignment X + of an itemset.

Exploring the witness subtree: as all supersets of X + ∪ {i} will satisfy the Jaccard
constraint, only generate the first closed diverse pattern in the subtree, add it to the
history H and continue the exploration of the remaining search space.

Baseline brunching heuristic (Mincov) : select the next free item i having the
minimum estimated support.
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Experiments (1/3)

Dataset |T | |I| ρ type of data
Chess 3 196 75 49% game steps
Splice1 3 190 287 21% genetic sequences
Mushroom 8 124 119 19% species of mushrooms
Connect 67 557 129 33% game steps
BMS-Web-View1 59 602 2.5 0.5% web click stream
T10I4D100K 100 000 1 000 1% synthetic dataset
T40I10D100K 100 000 1 000 4% synthetic dataset
Pumsb 49 046 7 117 1% census data
Retail 88 162 16 470 0.06% retail market basket data

Comparison with:

ClosedPatterns (denoted ClosedP)

Flexics (Dzyuba et al., DMKD 2017)

Implementation: Choco solver, timeout = 24 hours
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Comparing ClosedDiv with ClosedP (1/2)

Dataset
θ(%)

#Patterns Time (s) #Nodes
|I| × |T | (1) (2) (1) (2) (2) (2)
ρ(%)

Chess 30 5,316,468 14 815.15 0.41 10,632,935 57
75 × 3196 20 22,808,625 65 2838.30 3.40 45,617,249 318
49.33% 15 50,723,131 238 5666.03 26.18 101,446,261 1,154

10 OOM 1,622 OOM 728.13 OOM 7,774
Kr-vs-kp 30 5,219,727 14 682.94 0.41 10,439,453 57
73 × 3196 20 21,676,719 64 2100.79 3.41 43,353,437 307
49.32% 10 OOM 1,609 OOM 744.49 OOM 9,505

Mushroom 5 8,977 125 10.02 52.21 17,953 1,357
112 × 8124 1 40,368 9,935 34.76 8976.82 80,735 20,924
18.75% 0.8 47,765 12,743 36.52 14136.48 95,529 26,660

0.5 62,334 23,931 50.05 50646.09 124,667 49,406
Pumsb 40 - 4 - 58.78 - 15

2,113 × 49,046 30 - 14 - 246.80 - 59
3.50% 20 - 39 - 797.87 - 206

T40I10D100K 8 138 125 75.91 346.24 275 249
942 × 100000 5 317 284 331.47 1514.76 633 567

4.20% 1 65,237 7,217 5574.31 53000.72 130,473 14,517
Retail 5 17 12 10.74 31.13 33 23

16470 × 88,162 1 160 105 297.21 1599.69 319 218
0.06% 0.4 832 515 6073.53 31962.90 1,663 1,071

Table: (1): ClosedP (2): ClosedDiv (Jmax = 0.05) with Mincov
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Comparing ClosedDiv with ClosedP (2/2)

ClosedDiv generates less patterns (in the thousands) in comparison
to ClosedP (in millions).

On dense data sets, ClosedDiv is up to an order of magnitude
faster than ClosedP.

On sparse data sets, ClosedDiv can take significantly more time to
extract all diverse frequent closed patterns.

42 / 47



CPU Time Comparison of ClosedDiv with Flexics

à ClosedDiv largely dominates Flexics, being more than an order of
magnitude faster.
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Witness vs Mincov: CPU-time

(a) Dense data sets. (b) Sparse data sets.

The greater Jmax , the longer the CPU time
On dense data sets, both heuristics perform similarly
On moderately dense data sets, Witness is very effective
On sparse data sets, no heuristic clearly dominates the other
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Qualitative analysis of the relaxation

(c) Splice1 (θ = 10%, Jmax = 0.3) (d) T40 (θ = 5%, Jmax = 0.2)

à Witness allows to quickly discover a fewer set of patterns of better
quality compared to Mincov
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Summary

àA new generic solution for mining frequent diverse closed patterns
Exploiting relaxations in filtering and search procedure
Other diversity measures (entropy)

à Leveraging Jaccard index in ClosedDiversity leads to pattern sets with more
diversity among the patterns
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Conclusions

Other well known modeling paradigm in A.I. : SAT, ILP, ASP . . .

A growing interest for exploiting them in DM/ML:

On wide range of tasks

Reuse of solving technology: can outperform state-of-the-art

Nevertheless, scalability issue:

Novel encodings/propagators

Hybridization
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