UNIVERSITÉ DE NANTES

Declarative Data Mining

Samir Loudni
TASC (LS2N - CNRS) - DAPI
IMT Atlantique

ACP'2020 GdR IA, RO, and ANITI Autumn School 26/11/2020

Data mining

... is "the use of sophisticated data analysis tools to discover unknown, valid patterns and relationships in large datasets"

Data mining:

- Core of KDD
- Search for knowledge in data (regularities or correlations)
- Pattern domain : item-sets, sequences, graphs, etc.
- examples including pattern mining, clustering, association rules, etc.

	g_{1}	g_{2}	g_{3}	g_{4}
s_{1}	\times			\times
s_{2}	\times	\times	\times	
s_{3}		\times		\times
s_{4}	\times	\times	\times	
s_{5}	\times	\times		\times

association rule : $g_{1} g_{2} \rightarrow g_{3}$

Finding regularities from transaction databases

Example of Market Basket Data

- Finding regularities in the shopping behavior of customers of supermarkets, on-line shops, etc.
- More specifically:

Find sets of products that are frequently bought together.

- Possible applications of found frequent item sets:
- Improve arrangement of products in shelves, on a catalog's pages etc.
- Support cross-selling (suggestion of other products), product bundling.
- Often found patterns are expressed as association rules, for example: If a customer buys bread and wine, then she/he will probably also buy cheese.

Item Set: definition

Definition

Given a set of items (or attributes) \mathcal{I}, an itemset X is a subset of items, i.e., $X \subseteq \mathcal{I}$.

Input:

	i_{1}	i_{2}	\ldots	i_{n}
o_{1}	$d_{1,1}$	$d_{1,2}$	\ldots	$d_{1, n}$
o_{2}	$d_{2,1}$	$d_{2,2}$	\ldots	$d_{2, n}$
\vdots	\vdots	\vdots	\ddots	\vdots
o_{m}	$d_{m, 1}$	$d_{m, 2}$	\ldots	$d_{m, n}$

Size of the space search

 How many itemsets are there? $2^{|\mathcal{I}|}$.where $d_{i, j} \in\{$ true,false $\}$

Relational representation: $\mathcal{T} \subseteq \mathcal{O} \times \mathcal{I}$

	i_{1}	i_{2}	\ldots	i_{n}
o_{1}	$d_{1,1}$	$d_{1,2}$	\ldots	$d_{1, n}$
o_{2}	$d_{2,1}$	$d_{2,2}$	\ldots	$d_{2, n}$
\vdots	\vdots	\vdots	\ddots	\vdots
o_{m}	$d_{m, 1}$	$d_{m, 2}$	\ldots	$d_{m, n}$

where $d_{i, j} \in\{$ true,false $\}$

Transactional representation: \mathcal{T} is an array of subsets of \mathcal{I}

$$
\begin{gathered}
t_{1} \\
t_{2} \\
\vdots \\
t_{m}
\end{gathered}
$$

where $t_{i} \subseteq \mathcal{I}$

Example

	i_{1}	i_{2}	i_{3}
o_{1}	\times	\times	\times
o_{2}	\times	\times	
o_{3}		\times	
o_{4}			\times

t_{1}	i_{1}, i_{2}, i_{3}
t_{2}	i_{1}, i_{2}
t_{3}	i_{2}
t_{4}	i_{3}

Frequent Item Set mining

Problem Definition

Given the objects in \mathcal{O} described with the Boolean attributes in \mathcal{I}, listing every item set having a frequency above a given threshold $\theta \in \mathbb{N}$.

Input:

	a_{1}	a_{2}	\ldots	a_{n}
o_{1}	$d_{1,1}$	$d_{1,2}$	\ldots	$d_{1, n}$
o_{2}	$d_{2,1}$	$d_{2,2}$	\ldots	$d_{2, n}$
\vdots	\vdots	\vdots	\ddots	\vdots
o_{m}	$d_{m, 1}$	$d_{m, 2}$	\ldots	$d_{m, n}$

and a minimal frequency $\theta \in \mathbb{N}$.
where $d_{i, j} \in\{$ true,false $\}$

Problem Definition

Given the objects in \mathcal{O} described with the Boolean attributes in \mathcal{I}, listing every item set having a frequency above a given threshold $\theta \in \mathbb{N}$.

Output: every $X \subseteq \mathcal{I}$ such that there are at least θ objects having all attributes in X.

Frequent Item Set mining: illustration

Specifying a minimal frequency threshold $\theta=2$ objects (or, equivalently, a minimal relative frequency of 50%).

	a_{1}	a_{2}	a_{3}
o_{1}	\times	\times	\times
o_{2}	\times	\times	
O_{3}		\times	
o_{4}			\times

Specifying a minimal frequency threshold $\theta=2$ objects (or, equivalently, a minimal relative frequency of 50%).

	a_{1}	a_{2}	a_{3}
o_{1}	\times	\times	\times
o_{2}	\times	\times	
O_{3}		\times	
O_{4}			\times

The frequent itemsets are: $\emptyset(4),\left\{a_{1}\right\}(2),\left\{a_{2}\right\}$
(3), $\left\{a_{3}\right\}$ (2) and $\left\{a_{1}, a_{2}\right\}$ (2).

Pattern flooding
$\theta=2$

\mathcal{O}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
o_{1}	\times	\times	\times	\times	\times										
o_{2}	\times	\times	\times	\times	\times										
o_{3}	\times	\times	\times	\times	\times										
o_{4}						\times	\times	\times	\times	\times					
o_{5}						\times	\times	\times	\times	\times					
o_{6}						\times	\times	\times	\times	\times					
o_{7}											\times	\times	\times	\times	\times
o_{8}											\times	\times	\times	\times	\times

- How many frequent patterns?

Pattern flooding
$\theta=2$

\mathcal{O}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
o_{1}	\times	\times	\times	\times	\times										
o_{2}	\times	\times	\times	\times	\times										
o_{3}	\times	\times	\times	\times	\times										
o_{4}						\times	\times	\times	\times	\times					
o_{5}						\times	\times	\times	\times	\times					
o_{6}						\times	\times	\times	\times	\times					
o_{7}											\times	\times	\times	\times	\times
o_{8}											\times	\times	\times	\times	\times

- How many frequent patterns? $1+\left(2^{5}-1\right) \times 3=94$ patterns

Pattern flooding

$\theta=2$

\mathcal{O}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
o_{1}	\times	\times	\times	\times	\times										
o_{2}	\times	\times	\times	\times	\times										
o_{3}	\times	\times	\times	\times	\times										
o_{4}						\times	\times	\times	\times	\times					
o_{5}						\times	\times	\times	\times	\times					
o_{6}						\times	\times	\times	\times	\times					
o_{7}											\times	\times	\times	\times	\times
O_{8}											\times	\times	\times	\times	\times

- How many frequent patterns? $1+\left(2^{5}-1\right) \times 3=94$ patterns but actually 3 (potentially) interesting ones: $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\},\left\{a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\},\left\{a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\right\}$.
$\theta=2$

\mathcal{O}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
o_{1}	\times	\times	\times	\times	\times										
o_{2}	\times	\times	\times	\times	\times										
o_{3}	\times	\times	\times	\times	\times										
o_{4}						\times	\times	\times	\times	\times					
o_{5}						\times	\times	\times	\times	\times					
o_{6}						\times	\times	\times	\times	\times					
σ_{7}											\times	\times	\times	\times	\times
o_{8}											\times	\times	\times	\times	\times

- How many frequent patterns? $1+\left(2^{5}-1\right) \times 3=94$ patterns but actually 3 (potentially) interesting ones:

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\},\left\{a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\},\left\{a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\right\} .
$$

the need to focus on a condensed representation of frequent patterns.

4F. Closed and Free Patterns

Equivalence classes based on support.

\mathcal{O}	A	B	C
o_{1}	\times	\times	\times
o_{2}	\times	\times	\times
o_{3}		\times	\times
o_{4}		\times	\times
O_{5}			\times

Equivalence classes based on support.

\mathcal{O}	A	B	C
O_{1}	\times	\times	\times
O_{2}	\times	\times	\times
O_{3}		\times	\times
O_{4}		\times	\times
O_{5}			\times

- Closed patterns are maximal element of each equivalence class (Bastide et al., SIGKDD Exp. 2000): $A B C, B C$, and C.
- Generators or Free patterns are minimal elements of each equivalent class (Boulicaut et al, DAMI 2003): $\}, A$ and B

Closed Item sets

- Consider the set of closed (frequent) item sets:
$C(\mathcal{D}, \theta)=\{X \subseteq \mathcal{I} \mid \operatorname{freq}(X, \mathcal{D}) \geq \theta \wedge \forall Y \supset X: \operatorname{freq}(Y, \mathcal{D})<\operatorname{freq}(X, \mathcal{D})$
That is: An item set is closed if it is frequent, but none of its proper supersets has the same support.
- With this definition it follows

$$
\forall X \in F(\mathcal{D}, \theta): \exists Y \in C(\mathcal{D}, \theta): X \subseteq Y
$$

That is: Every frequent item set has a closed superset.

- A brute force approach that traverses all possible item sets, determines their support, and discards infrequent item sets is usually infeasible:
- Idea: Consider the properties of an item set's cover and support, in particular:

$$
\forall X: \forall Y \supseteq X: \quad \operatorname{cover}(Y) \subseteq \operatorname{cover}(X)
$$

- It follows:

$$
\forall X: \forall Y \supseteq X: \quad \operatorname{freq}(Y, \mathcal{D})<\operatorname{freq}(X, \mathcal{D} .
$$

That is: If an item set is extended, its support cannot increase. One also says that support is anti-monotone or downward closed.

- From $\forall X: \forall Y \supseteq X: \quad \operatorname{freq}(Y, \mathcal{D})<\operatorname{freq}(X, \mathcal{D})$ it follows immediately

$$
\forall \theta: \forall X: \forall Y \supseteq X: \quad \operatorname{freq}(X, \mathcal{D})<\theta \Rightarrow \operatorname{freq}(Y, \mathcal{D})<\theta
$$

That is: No superset of an infrequent item set can be frequent.

- Of course, the contraposition of this implication also holds:

$$
\forall \theta: \forall X: \forall Y \subseteq X: \quad \operatorname{freq}(X, \mathcal{D}) \geq \theta \Rightarrow \operatorname{freq}(Y, \mathcal{D}) \geq \theta
$$

That is: All subsets of a frequent item set are frequent.

Why declarative approaches?

- Specific methods/algorithms for specific problems
- Limited flexibility:
- for each problem, do not write a solution from scratch
- refining solution methods is hard, but typical in the KDD cycle
- Using constraint programming (CP) to specify data mining tasks as constraint satisfaction and optimization problems :
- Reusing solving technology
- Adding/removing (user) constraints
- Exhaustive, optimal

Declarative approaches for Item set mining

Declarative Approaches

- Pattern mining : De Raedt et al., KDD'08, Lazaar et al., CP'16, Schaus et al., CP'17, Belaid et al., IJCAI'19, Jabbour et al.CIKM'13, Boudane et al., IJCAI'16, Y. Izza et al., IJCAI'20, A. Hien et al., ECML/PKDD'20
- Sequence mining : E. Coquery et al. ECAI'12, Negrevergne et al., CPAIOR'15, Kemmar et al. CP'15, Aoga et al. ECML/PKDD'16, A. Hosseininasab et al., AAAI'19
- Pattern set mining : Khiari et al., CP'10, Guns et al., TKDE'13, Ouali et al., PAKDD'17
- Skypatterns / multi-objective : Negrevergne et al., ICDM'16, Ugarte et al. ECAI'14 \& AIJ'17
- Clustering : Mueller et al, DS'10, Babaki et al., CPAIOR'14, Dao et al. CP'15 \& ECAI'16 \& JCAI'18, Ouali et al. IJCAI'16, Chabert et al., CP'17 \& JAIR'20, N. ARIBI et al. PAKDD'18
- Classification : H. Verhaeghe et al. IJCAl'20, A. Ignatiev et al., CP'20, M. Mulamba et al. CPAIOR'20

Constraint Programming

A generic framework for solving combinatorial problems

- A declarative description of the problem by a triplet (X, D, C) where
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is finite set of variables
- $D=\left\{D_{1}, \ldots, D_{n}\right\}$ is finite set of domains (a.k.a possible values) of variables
- $C=\left\{c_{1}, \ldots, c_{e}\right\}$ is a set of constraints restricting the values of variables x_{i}
- Resolution $=$ Enumeration + Filtering
solution \equiv assignments on X satisfying all constraints of C

Resolution process

Filering

- domains reduction : process of removing values from variables which cannot lead to any solution
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.

Resolution process

Filering

- domains reduction : process of removing values from variables which cannot lead to any solution
- exemple: $x_{1}>x_{2}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}$
"Im $D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \nrightarrow\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.

Resolution process

Filering

- domains reduction : process of removing values from variables which cannot lead to any solution
- exemple: $x_{1}>x_{2}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}$
n- $\quad D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \nrightarrow\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.
- exemple: $x_{1}>x_{2}, x_{1}=x_{3}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}, D_{3}=\{1,3\}$ $\left.\left(x_{1}>x_{2}\right) \in D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \not\},\right\}$

Resolution process

Filering

- domains reduction : process of removing values from variables which cannot lead to any solution
- exemple: $x_{1}>x_{2}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}$
n' $\quad D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \nrightarrow\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.
- exemple: $x_{1}>x_{2}, x_{1}=x_{3}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}, D_{3}=\{1,3\}$

$$
\begin{aligned}
& \left(x_{1}>x_{2}\right) \oplus D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \nrightarrow\} \\
& \left(x_{1}=x_{3}\right) D_{1}=\{1, \not x\}, D_{3}=\{1, \not \approx\}
\end{aligned}
$$

Resolution process

Filering

- domains reduction : process of removing values from variables which cannot lead to any solution
- exemple: $x_{1}>x_{2}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}$
nu* $D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \nrightarrow\}$
- propagation : mechanism of calling the filtering algorithm associated with the constraints involving a variable x each time the domain of this variable is modified.
- exemple: $x_{1}>x_{2}, x_{1}=x_{3}$ et $D_{1}=\{1,2\}, D_{2}=\{0,1,2,3\}, D_{3}=\{1,3\}$ $\left(x_{1}>x_{2}\right) \rightarrow D_{1}=\{1,2\}, D_{2}=\{0,1, \not, \not, \nrightarrow\}$ $\left(x_{1}=x_{3}\right) \not D_{1}=\{1, \not x\}, D_{3}=\{1, \not p\}$ $\left(x_{1}=1\right) \wedge\left(x_{1}>x_{2}\right) \| D_{2}=\{0, \not \subset\}$

Global Constraints

- Constraints defined by a relation on any number of variables
- Example: AlIDifferent $\left(x_{1}, \ldots, x_{n}\right)$ specifies that all its variables must take different values
- Better filtering :
- A level of consistency at least as high as one could maintain on elementary constraints
- filtering performed using other tools
- Algorithms on graphs / automatons,
- network flow,
- ...
- Let \boldsymbol{d} - be the $0 / 1$ matrix where, for each transaction t and each item $i,\left(d_{t, i}=1\right)$ iff $(i \in t)$.
- Variables :
- Let X be the unknown pattern we are looking for. X is represented by n Boolean variables $\left\{X_{i} \mid i \in \mathcal{I}\right\}$ such that : $\forall i \in \mathcal{I},\left(X_{i}=1\right)$ iff $(i \in X)$
- The support of pattern X is represented by m Boolean variables $\left\{T_{t} \mid t \in \mathcal{T}\right\}$ such that : $\left(T_{t}=1\right)$ iff $(X \subseteq t)$
- Constraints:
- coverage : $\forall t \in \mathcal{T},\left(T_{t}=1\right) \Leftrightarrow \sum_{i \in \mathcal{I}} l_{i} \times\left(1-d_{t, i}\right)=0$
- frequency : $\forall i \in \mathcal{I},\left(X_{i}=1\right) \Rightarrow \sum_{t \in \mathcal{T}} T_{t} \geq \theta$
- redundant constraints : $\forall i \in \mathcal{I},\left(X_{i}=1\right) \Rightarrow \sum_{t \in \mathcal{T}} T_{t} \times d_{t, i} \geq \theta$

Coverage constraints

$$
\begin{aligned}
& T_{1}=1 \quad \Leftrightarrow \quad\left(X_{2}+X_{3}=0\right) \\
& T_{2}=1 \quad \Leftrightarrow \quad\left(X_{2}=0\right) \\
& T_{3}=1 \quad \Leftrightarrow \quad\left(X_{1}+X_{2}=0\right) \\
& T_{4}=1 \quad \Leftrightarrow \quad\left(X_{1}=0\right)
\end{aligned}
$$

Frequency constraint

$$
T_{1}+T 2+T_{3}+T_{4} \geq \theta=2
$$

Redundant constraints

$$
\begin{aligned}
& X_{1}=1 \quad \Rightarrow \quad T_{1}+T_{2} \geq \theta=2 \\
& X_{2}=1 \quad \Rightarrow \quad T_{4} \geq \theta \\
& X_{3}=1 \quad \Rightarrow \quad T_{2}+T_{3}+T_{4} \geq \theta=2
\end{aligned}
$$

Example : Enumeration and propagation

a)

	0		i_{2}
i_{3}			
t_{1}	1	0	0
	t_{2}		
t_{3}			
t_{4}	1	0	1
	0	0	1
	0	1	1

	0		0
i_{3}			
t_{1}	1	0	0
$t_{2} \leftarrow 1$	1	0	1
$t_{3} \leftarrow 1$	0	0	1
$t_{4}=1$	0	1	1

	0	0	0
$t_{1} \leftarrow 1$	1	0	0
$t_{2}=1$	1	0	1
$t_{3}=1$	0	0	1
$t_{4}=1$	0	1	1
	0	0	1
$t_{1} \leftarrow 0$	1	0	0
$t_{2}=1$	1	0	1
$t_{3}=1$	0	0	1
$t_{4}=1$	0	1	1

Three frequent item sets mined:

- $\left\{i_{1}\right\}$ with cover $\left\{t_{1}, t_{2}\right\}$,
- $\left\{i_{3}\right\}$ with cover $\left\{t_{2}, t_{3}, t_{4}\right\}$
- \emptyset with cover $\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$.
- The closedness constraint ensures that a pattern has no superset with the same frequency.
- coverage (required) : $\forall t \in \mathcal{T},\left(T_{t}=1\right) \Leftrightarrow \sum_{i \in \mathcal{I}} I_{i} \times\left(1-d_{t, i}\right)=0$
- closed : $\forall i \in \mathcal{I},\left(X_{i}=1\right) \Leftrightarrow \sum_{t \in \mathcal{T}} T_{t} \times\left(1-d_{t, i}\right)=0$

Reified model in a nutshell

Advantages:

- Intuitive CP encoding
- Generic: many constraints can be expressed
- Effective in case of tight constraints

Drawbacks:

- use an additional dimension of transaction variables
- huge number of constraints: $(2 n+m)$ reified constraints
- scalability issue: genericity/efficiency trade-off
\Leftrightarrow Scaling up CP solvers to large data ?

Global constraints for Closed Frequent item sets mining

A global constraint that encodes efficiently the Closed Frequent item sets mining problem (ClosedPatterns [Lazaar et al., 2016])

- Domain consistency with polynomial algorithm
- No reified constraints/extra variables

CoverSize global constraint (Schaus et al., CP'17) (not in this talk):

- New extra decision variable to manage the exact size of the cover of an itemset
- Offers more flexibility in modeling problems
- Use a vector X of Boolean variables $\left(X_{1}, \ldots, X_{|\mathcal{I}|}\right)$ for representing item sets
- ClosedPatterns $\mathcal{D}_{\mathcal{D}, \theta}(X)$ holds if and only if $f r e q(X) \geq \theta$ and X is closed
- Closure extension: A non-empty item set P is a closure extension of Q iff $\operatorname{cover}(P \cup Q)=\operatorname{cover}(Q)$ used for mining closed itemsets
if P is a closure extension of Q, and none of the proper supersets of P is a closure extension of Q, then $P \cup Q$ forms a closed pattern.

Three filtering rules: Let X^{+}be the set of present items
(1) remove value 0 from $\operatorname{dom}\left(X_{i}\right)$ if $\{i\}$ is a closure extension of X^{+}
(2) remove value 1 from $\operatorname{dom}\left(X_{i}\right)$ if the itemset $X^{+} \cup\{i\}$ is infrequent w.r.t. θ
(3) remove value 1 from $\operatorname{dom}\left(X_{i}\right)$ if cover $\left(X^{+} \cup\{i\}\right) \subseteq \operatorname{cover}\left(X^{+} \cup\{j\}\right)$ where j is an absent item.

Time complexity: $O(n \times(n \times m))$

Trans.	Items					
t_{1}	A	C		T	W	
t_{2}		C	D		W	
t_{3}	A	C		T	W	Z
t_{4}	A	C	D		W	Z
t_{5}	A	C	D	T	W	
t_{6}		C	D	T		

Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

	0	$0 / 1$	$0 / 1$	$0 / 1$	1	$0 / 1$
Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

Suppose that $X_{1}=0$ and $X_{5}=1 \cdots$

Running example : ClosedPatterns $\mathcal{D}, 3\left(X_{1}, \ldots, X_{6}\right)(2 / 2)$

Trans.	Items					
t_{1}	A	C		T	W	
t_{2}		C	D		W	
t_{3}	A	C		T	W	Z
t_{4}	A	C	D		W	Z
t_{5}	A	C	D	T	W	
t_{6}		C	D	T		

Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

	0	1	$0 / 1$	$0 / 1$	1	$0 / 1$
Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

$\{C\}$ is a closure extension of $\{W\}$ Rule\#1 applied

Running example : ClosedPatterns $\mathcal{D}, 3\left(X_{1}, \ldots, X_{6}\right)(2 / 2)$

Trans.	Items					
t_{1}	A	C		T	W	
t_{2}		C	D		W	
t_{3}	A	C		T	W	Z
t_{4}	A	C	D		W	Z
t_{5}	A	C	D	T	W	
t_{6}		C	D	T		

Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

	0	1	$0 / 1$	$0 / 1$	1	0
Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

freq $(W Z)=2<3$ Rule\#2 applied

Trans.	Items					
t_{1}	A	C		T	W	
t_{2}		C	D		W	
t_{3}	A	C		T	W	Z
t_{4}	A	C	D		W	Z
t_{5}	A	C	D	T	W	
t_{6}		C	D	T		

Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

	0	1	$0 / 1$	0	1	0
Trans.	A	C	D	T	W	Z
t_{1}	1	1	0	1	1	0
t_{2}	0	1	1	0	1	0
t_{3}	1	1	0	1	1	1
t_{4}	1	1	1	0	1	1
t_{5}	1	1	1	1	1	0
t_{6}	0	1	1	1	0	0

cover $(T W) \subset \operatorname{cover}(A W)$ Rule\#3 applied

Experiments (1/3)

Dataset	$\|\mathcal{T}\|$	$\|\mathcal{I}\|$	ρ	type of data
Chess	3196	75	49%	game steps
Splice1	3190	287	21%	genetic sequences
Mushroom	8124	119	19%	species of mushrooms
Connect	67557	129	33%	game steps
BMS-Web-View1	59602	2.5	0.5%	web click stream
T1014D100K	100000	1000	1%	synthetic dataset
T40I10D100K	100000	1000	4%	synthetic dataset
Pumsb	49046	7117	1%	census data
Retail	88162	16470	0.06%	retail market basket data

Comparison with:

- The most efficient CP method: CP4IM (reified)
- The most efficient ad hoc algorithm: LCM-v5.2ce.2cm

Implementation: OR-Tools, timeout $=3600 \mathrm{~s}$.
\Rightarrow https://loudni.users.greyc.fr/CPMiner.html

D	θ	\#C	\#Nodes		Time (s)	
	(\%)	(\approx)	ClosedPatterns	CP4IM	ClosedPatterns	CP4IM
$\begin{aligned} & \check{0} \\ & \frac{0}{0} \end{aligned}$	50	10^{5}	738901	738907	3.21	10.97
	40	10^{6}	2733667	2733735	12.27	40.85
	30	10^{6}	10679631	10681739	45.92	136.31
	20	10^{7}	45837171	45901933	187.89	467.52
	10	10^{8}	247960091	249411325	969.40	1950.51
	20	10^{2}	487	487	0.59	22.59
	10	10^{3}	3211	3211	0.14	25.54
	5	10^{4}	63935	63935	3.23	138.54
	1	10^{7}	13454755	13467247	400.10	1652.41
	90	10^{3}	6973	6973	0.92	7.10
	80	10^{4}	30223	30223	1.65	16.57
	70	10^{4}	71761	71761	4.09	33.72
	60	10^{5}	136699	136699	7.30	45.73
	50	10^{5}	260223	260223	14.53	110.19
	40	10^{5}	478781	478781	27.32	153.39
	30	10^{5}	920823	920823	49.97	304.52
	20	10^{6}	2966399	2966399	157.40	712.68
	10	10^{7}	16075555	16075555	760.71	2597.89
$\stackrel{\text { * }}{\substack{\text { ¢ }}}$	10	10^{2}	177	OOM	1.13	OOM
	5	10^{2}	643	OOM	1.78	OOM
	1	10^{5}	130477	OOM	25.78	OOM
	0.5	10^{6}	2551883	OOM	953.58	OOM
"̄	10	10	19	OOM	2.55	OOM
	1	10^{2}	329	OOM	4.02	OOM
	0.5	10^{3}	1233	OOM	12.73	OOM
	0.1	10^{4}	15901	OOM	796.82	OOM
	0.05	10^{4}	40229	OOM	2645.06	OOM

Experiments（3／3）：ClosedPatterns vs LCM

D	θ	\＃C	Time（s）		
	（\％）	(\approx)	ClosedPatterns	CP4IM	Icm
哭	50	10^{5}	3.21	10.97	． 32
	40	10^{6}	12.27	40.85	． 44
	30	10^{6}	45.92	136.31	． 07
	20	10^{7}	187.89	467.52	7.55
	10	10^{8}	969.40	1950.51	41.55
気	20	10^{2}	0.59	22.59	． 04
	10	10^{3}	0.14	25.54	． 07
	5	10^{4}	3.23	138.54	． 46
	1	10^{7}	400.10	1652.41	3.59
	90	10^{3}	0.92	7.10	． 22
	80	10^{4}	1.65	16.57	． 31
	70	10^{4}	4.09	33.72	． 40
	60	10^{5}	7.30	45.73	． 39
	50	10^{5}	14.53	110.19	． 52
	40	10^{5}	27.32	153.39	． 83
	30	10^{5}	49.97	304.52	． 37
	20	10^{6}	157.40	712.68	． 37
	10	10^{7}	760.71	2597.89	7.70
$\begin{array}{\|l} \stackrel{*}{\dot{f}} \\ \hline \end{array}$	10	10^{2}	1.13	OOM	． 43
	5	10^{2}	1.78	OOM	． 31
	1	10^{5}	25.78	OOM	1.32
	0.5	10^{6}	953.58	OOM	3.31
$\begin{aligned} & \overline{\mathrm{E}} \\ & \text { 区ive } \end{aligned}$	10	10	2.55	OOM	． 06
	1	10^{2}	4.02	OOM	． 10
	0.5	10^{3}	12.73	OOM	． 32
	0.1	10^{4}	796.82	OOM	． 80
	0.05	10^{4}	2645.06	OOM	． 07

Mining diverse patterns using CP

Redundancy

- Too many patterns, unmanageable and diversity not necessary assured
- Find a set of patterns that is:
- small
- non-redundant
- Several approaches for mining non-redundant patterns :
- Mikis (Knobbe \& Ho, 2006)
- Piker (Bringmann \& Zimmermann, 2009)

In| Exploiting CP for mining diverse set of patterns

Exploiting similarity measure to compare pairs of patterns:

- $|A \cap B|$
- $|A \cap B| /|A| .|B|$ (Cosine similarity)
- $|A \cap B| /|A \cup B|$ (Jaccard index)
- $|A \cup B|-|A \cap B|$ (Hamming distance)

Mining non-redundant patterns

Definition (Diversity/Jaccard constraint)

Let P and Q be two patterns. Given the Jaccard index Jac and a diversity threshold $J_{\max }$, we say that P and Q are pairwise diverse iff $\operatorname{Jac}(P, Q) \leq J_{\max }$.

Idea: Push the Jaccard constraint during pattern discovery to prune non-diverse patterns.

Task: Given a history \mathcal{H} of k pairwise diverse frequent closed patterns, the task is to mine new patterns P such that $\forall H \in \mathcal{H}, \operatorname{Jac}(P, H) \leq J_{\max }$.

Anti-monotonicity of the Jaccard constraint
The anti-monotonicity does not hold for the Jaccard constraint

- For $\mathcal{H}=\{B E\}$ and $J_{\text {max }}=0.19, \operatorname{Jac}(A E, \mathcal{H})=0.27 \geq J_{\text {max }}$ whereas $\operatorname{Jac}(A C E, \mathcal{H})=0.147 \leq J_{\max }$.

Relaxation of the Jaccard constraint

Anti-monotonic relaxations of the Jaccard constraint:
(i) A lower bound relaxation $L B_{J}$, which allows to prune non-diverse patterns during search;
(ii) An upper bound relaxation $U B J$ to find patterns ensuring diversity.

Relaxation of the Jaccard constraint : Example

- Monotonicity of $L B_{J}$: Let $H \in \mathcal{H}$ be an itemset. For any two patterns $P \subseteq Q$, the relationship $L B_{J}(P, H) \leq L B_{J}(Q, H)$ holds.
\Rightarrow If $L B_{J}(P, H)>J_{\max } \Rightarrow \operatorname{Jac}(P, H)>J_{\max } \Rightarrow P$ is not diverse
- Anti-monotonicity of $U B_{J}$: Let $H \in \mathcal{H}$ be an itemset. For any two patterns $P \subseteq Q$, the relationship $U B_{J}(P, H) \geq U B_{J}(Q, H)$ holds.
\Rightarrow If $U B_{J}(P, H) \leq J_{\max } \Rightarrow \operatorname{Jac}(P, H) \leq J_{\max } \Rightarrow P$ is diverse
- New mining task: Given a history \mathcal{H} of k pairwise diverse frequent closed patterns, the new task is to mine candidate patterns P s.t. $\forall H \in \mathcal{H}$, $L B_{J}(P, H) \leq J_{\text {max }}$. When $U B_{J}(P, H) \leq J_{\text {max }}$, for all $H \in \mathcal{H}$, the Jaccard constraint is fully satisfied.

ClosedDiversity $_{\mathcal{D}, \theta}\left(X, \mathcal{H}, J_{\text {max }}\right)$ (A. Hien et al., ECML/PKDD 2020)

- Use a vector X of Boolean variables $\left(X_{1}, \ldots, X_{|\mathcal{I}|}\right)$ for representing item sets
- ClosedDiversity ${ }_{\mathcal{D}, \theta}\left(X, \mathcal{H}, J_{\max }\right)$ holds if and only if :
(1) $\operatorname{freq}(X) \geq \theta$ and X is closed "nı ClosedPatterns
(2) X is diverse, $\forall H \in \mathcal{H}, L B_{J}(X, H) \leq J_{\max }$.

Two filtering rules: Let $X_{\text {Div }}$ be the set of items filtered by (Rule \#1)
(1) remove 1 from $\operatorname{dom}\left(X_{i}\right)$ if $\exists H \in \mathcal{H}$ s.t. $L B_{J}\left(X^{+} \cup\{i\}, H\right)>J_{\text {max }}$
(2) remove 1 from $\operatorname{dom}\left(X_{i}\right)$ if $\exists k \in X_{\text {Div }}$ s.t. $\operatorname{cover}\left(X^{+} \cup\{i\}\right) \subseteq \operatorname{cover}\left(X^{+} \cup\{k\}\right)$ $\Rightarrow L B_{J}\left(X^{+} \cup\{i\}, H\right)>L B_{J}\left(X^{+} \cup\{k\}, H\right)>J_{\max }$

Time complexity: $O(n \times(n \times m))$

New branching heuristic (WitNESS) : select the next free item i s.t. $\forall H \in \mathcal{H}, U B_{J}\left(X^{+} \cup\{i\}, H\right) \leq J_{\text {max }}$

Main idea : select free items favoring the satisfaction of the Jaccard constraint when extending the partial assignment X^{+}of an itemset.

Exploring the witness subtree: as all supersets of $X^{+} \cup\{i\}$ will satisfy the Jaccard constraint, only generate the first closed diverse pattern in the subtree, add it to the history \mathcal{H} and continue the exploration of the remaining search space.

Baseline brunching heuristic (Mincov) : select the next free item i having the minimum estimated support.

Dataset	$\|\mathcal{T}\|$	$\|\mathcal{I}\|$	ρ	type of data
Chess	3196	75	49%	game steps
Splice1	3190	287	21%	genetic sequences
Mushroom	8124	119	19%	species of mushrooms
Connect	67557	129	33%	game steps
BMS-Web-View1	59602	2.5	0.5%	web click stream
T1014D100K	100000	1000	1%	synthetic dataset
T40I10D100K	100000	1000	4%	synthetic dataset
Pumsb	49046	7117	1%	census data
Retail	88162	16470	0.06%	retail market basket data

Comparison with:

- ClosedPatterns (denoted ClosedP)
- Flexics (Dzyuba et al., DMKD 2017)

Implementation: Choco solver, timeout $=24$ hours

Dataset$\begin{gathered} \|\mathcal{I}\| \times\|\mathcal{T}\| \\ \rho(\%) \\ \hline \end{gathered}$	$\theta(\%)$	\#Patterns		Time (s)		\#Nodes	
		(1)	(2)	(1)	(2)	(2)	(2)
$\begin{gathered} \text { CHESS } \\ 75 \times 3196 \\ 49.33 \% \end{gathered}$	30	5,316,468	14	815.15	0.41	10,632,935	57
	20	22,808,625	65	2838.30	3.40	45,617,249	318
	15	50,723,131	238	5666.03	26.18	101,446,261	1,154
	10	OOM	1,622	OOM	728.13	OOM	7,774
$\begin{gathered} \text { KR-VS-KP } \\ 73 \times 3196 \\ 49.32 \% \end{gathered}$	30	5,219,727	14	682.94	0.41	10,439,453	57
	20	21,676,719	64	2100.79	3.41	43,353,437	307
	10	OOM	1,609	00M	744.49	OOM	9,505
$\begin{gathered} \hline \hline \text { MUSHROOM } \\ 112 \times 8124 \\ 18.75 \% \end{gathered}$	5	8,977	125	10.02	52.21	17,953	1,357
	1	40,368	9,935	34.76	8976.82	80,735	20,924
	0.8	47,765	12,743	36.52	14136.48	95,529	26,660
	0.5	62,334	23,931	50.05	50646.09	124,667	49,406
$\begin{gathered} \text { PUMSB } \\ 2,113 \times 49,046 \\ 3.50 \% \end{gathered}$	40	-	4	-	58.78	-	15
	30	-	14	-	246.80	-	59
	20	-	39	-	797.87	-	206
$\begin{gathered} \hline \text { T40I10D100K } \\ 942 \times 100000 \\ 4.20 \% \\ \hline \end{gathered}$	8	138	125	75.91	346.24	275	249
	5	317	284	331.47	1514.76	633	567
	1	65,237	7,217	5574.31	53000.72	130,473	14,517
$\begin{gathered} \text { RETAIL } \\ 16470 \times 88,162 \\ 0.06 \% \\ \hline \end{gathered}$	5	17	12	10.74	31.13	33	23
	1	160	105	297.21	1599.69	319	218
	0.4	832	515	6073.53	31962.90	1,663	1,071

Table: (1): ClosedP (2): ClosedDiv $\left(J_{\max }=0.05\right)$ with Mincov

- ClosedDiv generates less patterns (in the thousands) in comparison to ClosedP (in millions).
- On dense data sets, ClosedDiv is up to an order of magnitude faster than ClosedP.
- On sparse data sets, ClosedDiv can take significantly more time to extract all diverse frequent closed patterns.

Frequency Thresholds
"me ClosedDiv largely dominates Flexics, being more than an order of magnitude faster.

Variation of JMAX
(a) Dense data sets.

Variation of JMAX
(b) Sparse data sets.

- The greater $J_{\text {max }}$, the longer the CPU time
- On dense data sets, both heuristics perform similarly
- On moderately dense data sets, Witness is very effective
- On sparse data sets, no heuristic clearly dominates the other

Qualitative analysis of the relaxation

nul Witness allows to quickly discover a fewer set of patterns of better quality compared to Mincov

Summary

|n| A new generic solution for mining frequent diverse closed patterns

- Exploiting relaxations in filtering and search procedure
- Other diversity measures (entropy)

Int Leveraging Jaccard index in ClosedDiversity leads to pattern sets with more diversity among the patterns

Conclusions

Other well known modeling paradigm in A.I. : SAT, ILP, ASP ...

A growing interest for exploiting them in DM/ML:

- On wide range of tasks
- Reuse of solving technology: can outperform state-of-the-art

Nevertheless, scalability issue:

- Novel encodings/propagators
- Hybridization

